

Huawei IoT Certification Training

HCIA-IoT

Trainee Guide for IoT
Engineers

ISSUE: 2.5

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary and Confidential
Copyright © Huawei Technologies Co,Ltd

Copyright © Huawei Technologies Co., Ltd. 2021. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties,
guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: http://e.huawei.com

http://e.huawei.com/

Trainee Guide for IoT Engineers Page 1

Huawei Certification System
Huawei Certification follows the "platform + ecosystem" development strategy, which is
a new collaborative architecture of ICT infrastructure based on "Cloud-Pipe-Terminal".
Huawei has set up a complete certification system consisting of three categories: ICT
infrastructure certification, platform and service certification, and ICT vertical
certification. Huawei provides the only all-range technical certification in the industry.

Huawei Certification offers three levels of certification: Huawei Certified ICT Associate
(HCIA), Huawei Certified ICT Professional (HCIP), and Huawei Certified ICT Expert
(HCIE). Huawei Certification covers all ICT fields and adapts to the industry trend of ICT
convergence. With its leading talent development system and certification standards, it
is committed to fostering new ICT talent in the digital era, and building a sound ICT
talent ecosystem.

Huawei Certified ICT Associate-Internet of Things (HCIA-IoT) is designed for Huawei
IoT product technical personnel (including university students or IoT practitioners) and
frontline engineers in Huawei offices and representative offices. HCIA-IoT covers the
HUAWEI CLOUD IoT platform, Huawei LiteOS, and IoT communications technologies
(wireless communications technologies and IoT gateway technologies).

The HCIA-IoT certificate system introduces you to the industry and market, helps you
innovate, and puts you at the forefront of the IoT.

Trainee Guide for IoT Engineers Page 2

Trainee Guide for IoT Engineers Page 3

About This Document

Overview
Driven by the global informatization tide, China's computer industry has developed
rapidly in recent years. Various emerging technologies have become increasingly mature.
The Internet of Things (IoT) has become an integral part of our lives. Things like smart
watches, smart bands, vending machines, and smart vehicles are all powered by IoT
technology.

Many traditional industries, such as electric power and transportation, are also leveraging
IoT technology. In addition, IoT is being used together with emerging technologies such
as artificial intelligence (AI) to form AIoT, which has become popular. Whether you are
from an ICT industry or a traditional one, learning and understanding IoT technology is
an important means to innovate solutions.

HCIA-IoT V2.5 trains and certifies engineers to develop end-to-end IoT services based on
the Huawei IoT solution architecture.

Description
This guide is used together with the HCIA-IoT V2.5 courses. It supplements course slides
and adds related knowledge points.

This guide is divided into 13 chapters corresponding to the 13 courses slides that are
based on the IoT architecture. The following is a summary of each chapter:

 Chapter 1 describes the concept and development history of the IoT, layers of the IoT
architecture, and Huawei's IoT solution.

 Chapter 2 describes IoT industry applications and solutions, covering smart city,
smart campus, smart grid, IoV, and industrial IoT scenarios. It also describes the
difficulties facing each industry and the transformation and benefits brought by IoT
technology. In addition, it explores the combination of the IoT with six emerging
technologies and describes the development trends of the IoT industry.

 Chapter 3 describes the security challenges faced by the IoT industry, and introduces
Huawei's IoT security solutions and related applications.

 Chapter 4 describes common network communications technologies of the IoT based
on the solutions described in chapter 2.

 Chapter 5 describes key technologies and corresponding solutions of the widely used
NB-IoT communications technology in the IoT field.

 Chapter 6 describes the popular communication technology 5G, including its
development process, core technologies, application scenarios, and commercial
solutions.

 Chapter 7 describes difficulties and challenges faced by IoT gateways in industrial
scenarios, edge computing, and mesh networking.

Trainee Guide for IoT Engineers Page 4

 Chapter 8 describes capabilities of home gateways, as well as the Huawei HiLink
platform and corresponding solutions.

 Chapter 9 describes the positioning of the IoT platform in the IoT solution,
capabilities required by the IoT industry, and the services and capabilities of the
HUAWEI CLOUD IoT platform.

 Chapter 10 describes the basic knowledge required for IoT platform development
and the secondary development process based on the HUAWEI CLOUD IoT platform.

 Chapter 11 describes the basic knowledge and development history of operating
systems, the role of the IoT operating system in the IoT industry, problems faced by
the IoT operating system and IoT devices, and Huawei LiteOS.

 Chapter 12 describes experimental theories. It describes basic knowledge about the
single-chip microcomputer and sensor technologies required for device development,
and knowledge about the kernel, framework, and APIs of Huawei LiteOS.

 Chapter 13 describes AT commands used in communications module interconnection
testing and the network interconnection process using communications modules.

This guide also provides links to related knowledge for HCIA-IoT learners. You do not
need to master all of the knowledge related to this course in this guide because of the
difficulties, but we encourage you to engage in further learning on your own.

Now, let's begin to learn about the IoT.

Trainee Guide for IoT Engineers Page 5

Contents

About This Document ... 3

Overview ... 3

Description ... 3

1 What Is Internet of Things? ... 12

1.1 Origin of the IoT ... 12

1.2 IoT Architecture... 12

1.3 Huawei IoT Solution .. 13

1.3.1 Platform Layer ... 14

1.3.2 Network Layer .. 14

1.3.3 Sensing Layer.. 14

2 IoT Industry Applications and Solutions ... 16

2.1 Smart City Solution .. 16

2.1.1 Common Problems ... 16

2.1.2 Solutions ... 18

2.2 Smart Campus Solution ... 19

2.2.1 Common Problems ... 19

2.2.2 Solutions ... 20

2.3 Smart Grid Solution ... 21

2.3.1 Common Problems ... 21

2.3.2 Solutions ... 22

2.4 IoV Solution (IoV and DRIS) ... 22

2.4.1 Common Problems ... 22

2.4.2 Solutions ... 23

2.5 Industrial IoT Solution .. 24

2.5.1 Development Bottlenecks .. 24

2.5.2 Solutions ... 25

2.6 Development Trend of IoT Applications .. 26

3 IoT Security Technologies ... 28

3.1 Typical IoT Security Cases ... 28

3.2 Huawei IoT Security Architecture ... 29

3.3 Typical Huawei IoT Security Cases ... 31

4 Common IoT Communications Technologies ... 32

4.1 Wired Communications Technologies .. 32

4.1.1 Ethernet .. 32

Trainee Guide for IoT Engineers Page 6

4.1.2 RS-232 and RS-485 .. 33

4.1.3 Communication Serial Port Bus ... 34

4.1.4 M-Bus .. 34

4.1.5 PLC.. 34

4.1.6 Comparison of Wired Communications Technologies .. 35

4.2 Wireless Communications Technologies .. 35

4.2.1 Short-Range Wireless Communications Technologies .. 35

4.2.1.1 Bluetooth ... 35

4.2.1.2 Wi-Fi .. 36

4.2.1.3 ZigBee... 37

4.2.1.4 Z-Wave ... 37

4.2.1.5 Comparison of Short-Range Wireless Communications Technologies ... 38

4.2.2 Cellular Mobile Communications Technology.. 39

4.2.2.1 2G ... 39

4.2.2.2 3G ... 39

4.2.2.3 4G ... 39

4.2.2.4 5G ... 40

4.2.2.5 Comparison of Cellular Mobile Communications Technologies ... 40

4.2.3 LPWA Communications Technologies ... 41

4.2.3.1 Sigfox .. 41

4.2.3.2 LoRa .. 41

4.2.3.3 NB-IoT .. 41

4.2.3.4 eMTC ... 41

4.2.3.5 Comparison of LPWA Technologies ... 42

4.2.4 Wireless Communications Technologies .. 43

5 NB-IoT Communications Technologies and Solutions ... 45

5.1 NB-IoT Standards Evolution and Industry Development ... 45

5.1.1 Evolution of NB-IoT Standards .. 45

5.1.2 LPWA Technologies Adopted by Global Operators .. 46

5.1.3 NB-IoT Spectrum Selections of Global Operators .. 46

5.1.4 NB-IoT Industry Development ... 47

5.2 Key NB-IoT Technologies ... 48

5.2.1 Ultra-Low Cost ... 49

5.2.1.1 NB-IoT Deployment Modes ... 49

5.2.1.2 Chip Design .. 50

Trainee Guide for IoT Engineers Page 7

5.2.2 Ultra-Low Power Consumption ... 50

5.2.3 Ultra-Wide Coverage ... 51

5.2.4 Massive Connections ... 52

5.3 NB-IoT Solutions ... 52

6 5G Communications Technologies and Solutions ... 55

6.1 5G Standards Evolution and Industry Development ... 55

6.2 Key 5G Technologies ... 57

6.2.1 New Architecture .. 58

6.2.1.1 Network Slicing ... 58

6.2.1.2 NSA&SA Networking .. 59

6.2.1.3 5G Core Network (NGC)... 59

6.2.2 New Radio ... 60

6.2.3 Full Spectrum ... 60

6.3 Three 5G Application Dimensions .. 61

6.3.1 eMBB ... 61

6.3.2 mMTC .. 61

6.3.3 URLLC .. 61

6.4 5G Commercial Solutions .. 62

6.4.1 B2C Solutions.. 62

6.4.2 B2B Solutions.. 63

6.4.3 B2H Solutions ... 64

7 Huawei Industrial IoT Gateways... 66

7.1 Overview of Industrial IoT Gateways ... 66

7.1.1 Challenges Faced by IoT in the Industrial Field ... 66

7.1.2 Why Industrial IoT Gateways? .. 67

7.2 Edge Computing ... 67

7.3 Network Topology ... 69

7.3.1 Star Topology ... 70

7.3.2 Ring Topology... 71

7.3.3 Bus Topology ... 71

7.3.4 Mesh Topology ... 72

8 Home IoT Gateways ... 74

8.1 Home IoT Gateway Overview .. 74

8.1.1 Home Network Development .. 74

8.1.2 Positioning of Smart Home Gateways .. 75

8.1.3 Key Services of Smart Home Gateways .. 76

8.2 Huawei Smart Home Solution ... 77

8.3 HiLink Platform ... 78

Trainee Guide for IoT Engineers Page 8

9 IoT Platform ... 80

9.1 Overview of Ecosystem and Platform ... 80

9.1.1 Platform Model.. 80

9.1.2 Ecosystem .. 80

9.2 Origin of the IoT Platform .. 81

9.2.1 IoT Is Ushering In Industry Innovation and Transformation ... 81

9.2.2 Major Challenges Facing the IoT Industry ... 82

9.2.3 Requirements for the IoT Platform .. 83

9.3 Introduction to the HUAWEI CLOUD IoT Platform ... 84

9.3.1 IoT Platform Overview .. 84

9.3.2 IoT Device Access .. 88

9.3.2.1 Overview .. 88

9.3.2.2 Typical IoT Protocols ... 89

9.3.3 Device Management .. 93

9.3.3.1 Device Registration and Access Authentication .. 93

9.3.3.2 Command Delivery .. 93

9.3.3.3 Device Linkage Rules .. 96

9.3.3.4 Firmware and Software Upgrades .. 97

9.3.3.5 Batch Operations .. 98

9.3.4 Data Forwarding ... 98

9.3.5 Application Integration ... 99

9.3.5.1 Application-side RESTful APIs .. 99

9.3.5.2 Application Registration Authentication ... 100

9.3.5.3 Subscribe/Push .. 100

9.3.6 IoT Analytics... 101

9.3.7 IoT Studio .. 107

9.3.8 Other Related Services ... 108

9.3.8.1 Edge Computing.. 108

9.3.8.2 Global SIM Link .. 110

9.3.9 Characteristics of the HUAWEI CLOUD IoT Platform ... 111

9.3.9.1 Access Agnostic ... 111

9.3.9.2 Reliable .. 111

9.3.9.3 Secure .. 113

9.3.9.4 Scalable ... 113

9.3.9.5 Open .. 114

Trainee Guide for IoT Engineers Page 9

10 IoT Platform Secondary Development ... 115

10.1 Introduction to Platform Secondary Development .. 115

10.2 Product Development .. 115

10.2.1 Product Model .. 117

10.2.1.2 Product Model Example: Smart Water Meter ... 118

10.2.2 Codec ... 119

10.2.2.1 Overview... 119

10.2.2.2 Data Reporting ... 120

10.2.2.3 Command Delivery ... 122

10.3 Development on the Application Side... 124

10.3.1 Calling APIs .. 125

10.3.1.1 Making an API Request ... 125

10.3.1.2 Authentication .. 128

10.3.1.3 Returning a Response .. 130

10.3.2 API ... 131

10.3.2.1 Creating a Device .. 131

10.3.2.2 Querying a Device .. 132

10.3.2.3 Modifying Device Information ... 132

10.3.2.4 Querying Device Messages ... 133

10.3.2.5 Deleting a Device .. 133

10.4 Development on the Device Side .. 134

11 IoT OS .. 140

11.1 Preliminary Study of the OS ... 140

11.1.1 Concept ... 140

11.1.2 History ... 141

11.1.3 Development ... 143

11.2 Challenges to the IoT OS ... 143

11.2.1 IoT Terminal Development .. 144

11.2.2 IoT OS Development .. 144

11.3 Huawei LiteOS ... 144

11.3.1 Introduction to Huawei LiteOS... 144

11.3.2 Commercial Use of Huawei LiteOS .. 145

11.3.3 Huawei LiteOS Industry Applications ... 145

12 Sensing Layer Development ... 147

12.2 Hardware Development at the Sensing Layer ... 148

12.2.1 Single-Chip Microcomputer Basics .. 148

Trainee Guide for IoT Engineers Page 10

12.2.1.1 Microcomputer Working Principles .. 148

12.2.1.2 Instruction Set .. 149

12.2.1.3 Processing Units .. 151

12.2.1.4 Architecture of the Single-Chip Microcomputer.. 151

12.2.1.5 ADC and DAC ... 152

12.2.2 Sensing Technology Basics ... 152

12.2.2.1 Photoelectric Sensor .. 153

12.2.2.2 Temperature Sensor ... 153

12.2.2.3 Acceleration Sensor .. 154

12.2.2.4 Heart Rate Sensor ... 155

12.3 Software Development at the Sensing Layer ... 155

12.3.2 Huawei LiteOS Kernel .. 156

12.3.2.2 Task ... 156

12.3.2.3 Memory .. 161

12.3.2.4 Interrupt.. 164

12.3.2.5 Queue .. 164

12.3.2.6 Event .. 165

12.3.2.7 Semaphore .. 166

12.3.2.8 Mutex... 166

12.3.2.9 Time Management ... 167

12.3.2.10 Timer .. 167

12.3.3 Huawei LiteOS Framework .. 168

12.3.4 Huawei LiteOS APIs .. 169

13 AT Commands of the Communication Module .. 170

13.2 Introduction to AT Commands .. 171

13.2.1 AT Command Types ... 171

13.2.2 NB-IoT AT Commands ... 171

13.2.3 Wi-Fi AT Commands .. 172

13.2.4 AT Commands for Huawei-Certified Modules .. 173

13.3 Terminal-side Development for Communication Modules ... 174

13.3.1 NB-IoT Terminal Interconnection Process .. 174

13.3.2 Wi-Fi Terminal Interconnection Process ... 175

14 Conclusions ... 176

15 References ... 178

Trainee Guide for IoT Engineers Page 11

16 Appendix ... 179

Trainee Guide for IoT Engineers Page 12

1 What Is Internet of Things?

1.1 Origin of the IoT
When we hear about Troy, we may think of the Trojan horse. In the IoT industry, there is
also a well-known event related to Troy, the Trojan room coffee pot event. This event,
which took place at the Trojan Room of the Computer Laboratory in Cambridge
University in 1991, can be said to be the origin of the IoT.

The Auto-ID Center in America first proposed the concept of the IoT in 1999 based on
radio-frequency identification (RFID) and Electronic Product Code (EPC). At the 2005
World Summit on the Information Society, the International Telecommunication Union
(ITU) discussed the concept of the IoT and revised its definition. In 2009, then Chinese
Premier Wen Jiabao proposed the idea of "Sensing China" in Wuxi. This could be
regarded as the beginning of the IoT enlightenment in China. In 2015, Chinese Premier Li
Keqiang signed and released Made in China 2025, which can be seen as representative of
China's IoT policies.

Today, the IoT has been widely used in our daily lives. IoT applications can be classified
into three types: consumption-driven, policy-driven, and industry-driven.

Consumption-driven applications align with our daily lives. They are used in products
such as smart bands, VR devices, smart speakers, and shared bicycles.

Policy-driven applications are a series of IoT applications promoted by government
agencies, helping them better manage cities and provide better public services. These
applications include smart security, smart city management, and smart street lamp
management applications.

Industry-driven applications are mainly oriented to customers for commercial use.
Customers directly use IoT technology in business, such as smart factories. They can
collect production data from robotic arms or machine tools and analyze it to maximize
its use. This type of applications is also used in IoV, smart logistics, and smart agriculture.

1.2 IoT Architecture
The IoT is an Internet where all things are interconnected, which contains two meanings.
One is that the essence of the IoT is an Internet. The IoT is a technology designed based
on Internet technologies. The other meaning is that things connected to the Internet are
not just our computers and mobile phones. They can be a variety of things around us,
such as air conditioners and refrigerators. IoT technology aims to help us connect all
things to the Internet.

Trainee Guide for IoT Engineers Page 13

Since the advent of the Internet, people have become closer to each other. The IoT
connects everything. In the era of information explosion, what we see on the Internet can
be described as data. We can say that the IoT is actually a data service technology. To
build such an IoT world, the connected devices need to be smart enough to understand
our needs and provide us with more intelligent services.

The IoT architecture consists of four layers: application, platform, network, and sensing.

The sensing layer is the layer of things. It contains various types of sensors, chipsets, and
modules. This layer is used to collect data, process signals, and communicate with and
send data to the platform layer using a communications module.

The network layer is equivalent to a communications medium between the sensing layer
and the platform layer. We can use a wireless network, such as GPRS, NB-IoT, or 4G, or
use wired access, such as gateways, to transmit data to the platform layer.

The platform layer is responsible for storing, using, and maintaining the data. We can use
the obtained data for data processing and other operations.

The application layer is oriented to customers. It is responsible for presenting the
collected data specifically.

Figure 1-1 Layers of the IoT

1.3 Huawei IoT Solution
This section describes Huawei's full-stack IoT solution to meet IoT requirements. Huawei
provides full-stack products from the sensing layer to the platform layer to help
developers quickly develop and update products. The solution mainly includes Huawei
LiteOS, Huawei network solutions, and HUAWEI CLOUD IoT platform.

Trainee Guide for IoT Engineers Page 14

1.3.1 Platform Layer
The top layer of the Huawei IoT solution is the HUAWEI CLOUD IoT platform. The
platform layer is located in the middle of the IoT architecture. It has an application layer
above it, and the network and sensing layers below it. It serves as a bridge between the
upper and lower layers. The IoT platform is divided into two layers. The upper layer is the
service enablement layer, which provides services for a wealth of applications. The lower
layer is the connectivity management layer. It is used to connect IoT devices to the
platform layer and manage them, and is used for authentication.

1.3.2 Network Layer
Under the platform, there are two network access modes. The first mode is wireless
access. NB-IoT is an end-to-end solution. It is mainly proposed by Huawei and Vodafone,
and Huawei is actively engaging in NB-IoT, so NB-IoT can be regarded as an IoT solution
of Huawei. Various devices are connected to base stations through a series of protocols,
transfer data to the IoT platform using core networks, and provide data to vertical
industry applications. In this process, NB-IoT is mainly used to transfer data.

5G supports a large number of industries. It divides the entire network into different
slices based on users' network requirements. These slices have different attributes. For
example, UHD slices have the attributes of high bandwidth and high transmission rate,
and real-time service slices feature low latency. Based on this, different network
requirements of different industries can be implemented on the same 5G network.

In addition to the preceding wireless access technologies, Huawei provides a series of
access solutions for the fixed access mode, such as industrial gateways used in harsh
industrial environments. These industrial gateways have the edge computing capability to
meet industrial requirements for low-latency near-end processing.

For homes, Huawei also provides smart gateways. With them, customers can remotely
control and access the cloud platform through a mobile phone to deliver commands.
Then, the smart devices connected to smart gateways are controlled based on the
commands to meet customer requirements. In addition, smart gateways can monitor
smart home devices in real time. If a fault occurs, they report it to customers and handle
it by themselves.

1.3.3 Sensing Layer
In addition to its own platform and gateways, Huawei also has its own operating system,
Huawei LiteOS, which is located at the sensing layer. Huawei LiteOS is a lightweight,
intelligent operating system that features low power consumption and fast response. The
architecture of the operating system is described as a "1+N" architecture. "1" means that
the operating system has only one kernel, and "N" means there are N pieces of
middleware. The following takes Iron Man/Tony Stark as an example to better
understand this architecture. The kernel can be considered as Tony Stark. Then, different
middleware can be added for different scenarios. The middleware is similar to different
components of Iron Man suits used to handle different situations. Huawei LiteOS is
designed to shorten the time to market (TTM) of smart devices. In addition to being
applicable to multiple Huawei products, Huawei LiteOS supports connection to products

Trainee Guide for IoT Engineers Page 15

and platforms of partners in the industry, greatly shortening the development time of the
IoT industry.

Trainee Guide for IoT Engineers Page 16

2 IoT Industry Applications and Solutions

This chapter describes problems encountered in the domains of smart city, smart campus,
smart grid, IoV, and industrial IoT, and benefits of using IoT technology. It also introduces
the development trends of the IoT based on other popular technologies.

2.1 Smart City Solution
Smart city is a big topic because a city contains many elements, which can create a
plethora of problems. This section describes a few common problems encountered in
smart city and the solutions.

2.1.1 Common Problems
The first problem is traffic management, which is critical to urban development. A highly
developed city must have a correspondingly developed transportation system. To make a
city better, transportation is one of the first issues to address. In cities, traffic accidents
and congestion occur often as a result of drivers disobeying traffic rules. This forces other
drivers to waste more time on the road. In addition, drivers brake frequently due to
traffic jams, reducing the energy efficiency of gas-powered vehicles and increasing
pollution. City managers need to find an appropriate solution to traffic congestion and
alleviate the pollution.

Parking problems can be described from two aspects: parking management and
experience. First, in terms of management, most parking space details are not clear
enough. Navigation apps prompt you about parking lots near your destination, but they
cannot tell you whether there are available parking spaces. When you arrive, you may
find that the parking lot is full.

The tidal effect in parking lots is also a problem. The parking lot is congested once in the
morning and once at night. For example, when you go to work in the morning, you drive
cars from parking lots near home and park them in your companies' parking lots. In the
morning, parking spaces near home are unused. When you go home in the evening,
parking spaces in companies become unused. So there's a time-based imbalance for
these parking spaces.

In addition, for parking space managers, charging and inspection problems also exist.
They can centrally manage parking spaces at the entrances and exits of shopping malls.
But they may have trouble charging roadside parking spaces. Another problem is illegal
parking. Traffic police give parking tickets to vehicles that violate parking rules, but this is
a waste of manpower and resources.

Trainee Guide for IoT Engineers Page 17

In terms of parking experience, drivers cannot find idle parking spaces because it is
difficult to obtain parking space details. It is also difficult to find cars in parking lots. For
example, you park your car in the large parking lot of a shopping mall, but when you
finish shopping and head back to your car, you cannot find it. Congestion at the
entrances and exits of parking lots during peak hours is also a problem. These are the
parking problems we may encounter.

Street lamp issues also exist in cities. Currently, most street lamps in cities are controlled
by time-based rules. When the sky is almost dark, street lamps are turned on. When the
sun comes out in the morning, street lamps are turned off. However, the time when the
sky turns dark varies seasonally. Lights come on too early in the summer and too late in
the winter. In these cases, street lamps controlled by time waste electricity.

There are also special cases, for example, solar eclipses. Although a solar eclipse occurs in
the daytime, the sky is as dark as at night. Street lamps controlled by time cannot be
turned on for emergencies. Problems also occur when street lamps are faulty and need to
be repaired. Maintenance is often performed in the morning. When street lamps are not
turned on in the morning, maintenance personnel need to check them one by one to
locate faulty ones, which is time- and labor-consuming. If maintenance personnel do not
perform maintenance in time, faults may not be detected. If a technology can be used to
monitor the running status of each street lamp in real time and report an error once a
street lamp becomes faulty, maintenance will be more convenient.

Energy conservation is a problem, too. For example, in the second half of the night, there
are fewer vehicles on the road. Leaving street lamps on is a waste of energy. A relatively
intelligent system is required to automatically detect pedestrians or vehicles on the road
and adjust the brightness of street lamps.

The next problem is the revenue of lamp pole resources. There used to be many utility
poles on the road, but now they can hardly be seen. This forces us to seek more revenue
from rare pole position resources. For example, we can install surveillance cameras and
5G base stations on street lamp poles. We can also install charging piles for new energy
vehicles under street lamp poles. In this way, we can maximize the utilization of pole
position resources. These are the street lamp problems that we may encounter.

Firefighting management also has problems. In our cities, firefighting is still an issue that
we need to pay attention to, because fires can cause great damage to our personal and
public property. Small public areas in cities are the most prone to fires. Why? First, these
areas are small and things are placed haphazardly. Flammable materials are likely to be
dangerously placed. Second, in older places, electric cables are aged. Cable aging is a
more serious threat in old restaurants, because they use more electricity. In addition,
electricity piracy is severe in these places, which increases fire risks. To sum up, fire
hazards are prominent, fire facilities are weak, and fire warnings are not responsive.

Manhole cover management is also an obvious problem in cities. There are a large
number of manhole covers, which belong to different bureaus, such as water,
communications, and gas bureaus. Therefore, quantity and ownership issues make
managing these manhole covers difficult. Which bureau is responsible for managing
these manhole covers? How can they manage a large quantity of manhole covers?
Another problem is theft and loss. Manholes with missing covers pose a serious safety
risk to drivers and pedestrians. In addition, the sewage pipes under manhole covers may
contain toxic gas, which can float upwards from manholes with missing covers, posing

Trainee Guide for IoT Engineers Page 18

additional public health and safety risks. Manhole cover management is a significant
issue that requires the coordination of multiple bureaus.

Similarly, there are problems with sanitation management in cities. We can roughly
divide the problems into four directions: outdated, low, disordered, and slow. First, the
sanitation bureau does not collect information about public garbage bins on the road.
The management mode of regular clearing is outdated. Second, sanitation is mainly
managed by people. Human factors seriously impede sanitation management, causing
problems such as command and dispatch difficulties. Third, sanitation bureaus are often
averse to using new technologies. They are still using conventional methods to manage
urban sanitation. The sanitation industry lacks innovation and develops slowly.

2.1.2 Solutions
Various problems in different aspects of city management hinder the development of
cities. City managers need to find better ways to solve these problems. Huawei has
designed a comprehensive smart city solution to solve problems related to transportation,
parking, street lamps, firefighting, manhole covers, and sanitation.

The smart city solution corresponds to the architecture of the IoT. At the sensing layer,
there are a large number of IoT devices, such as surveillance cameras on roads, gateways
that control various sensors, and low-power consumption devices such as electricity
meters and water meters. We can select the most appropriate network technologies for
different IoT devices. For example, we can use the wireless 2G, 3G, 4G or NB-IoT or wired
network to connect devices to the IoT platform. After the devices are managed on the IoT
platform, data can be uploaded to the platform database and analyzed to solve
problems. At the top are the solutions for different smart city applications.

The advantages of the smart city solution lie in three aspects: lowering the development
threshold of IoT applications, reducing the development difficulty for developers, and
shortening the incubation time of the entire IoT city ecosystem. In this way, a smart city
ecosystem can be quickly implemented. The platform can aggregate information from all
aspects of cities and provide more convenient services for comprehensive city
management. For devices and networks, this solution adapts devices and standards used
and provides a unified management model for city managers, avoiding fragmented
access of IoT applications to the platform.

Detailed solutions to some of the problems described earlier are provided. The first is the
intelligent transportation solution. This solution uses application systems such as e-Police
and signal control to control traffic in real time. It uses sensors such as cameras on roads
to remotely manage city roads and relieve traffic pressure. In addition, it uses electronic
and automatic patrolling methods to handle vehicles violating traffic laws and
regulations, thereby reducing congestion caused by the handling of traffic violations,
reducing the time spent on roads, and reducing pollution.

The smart parking solution is similar to the smart city solution. The IoT devices used in
the smart parking solution are geomagnetic vehicle detectors. A geomagnetic vehicle
detector can be placed or buried under each parking space. The detector can detect the
change in the geomagnetic field to determine whether a vehicle is parked. If these
devices are connected to the Internet, they can also tell drivers where there are idle
parking spaces. In addition to detection, they can be used as collectors of parking
information. The wireless technology NB-IoT is used to connect devices to the platform

Trainee Guide for IoT Engineers Page 19

because NB-IoT applies to low power wide coverage scenarios. The smart parking
solution not only obtains information of many parking lots, but also enables drivers to
use self-service charging, reducing parking management costs.

In the smart street lamp solution, smart street lamp control devices, including various
sensing components such as photosensitive sensors, are deployed at the sensing layer. At
the network layer, a wide range of street lamps are connected to the Internet through a
carrier's wireless WANs or a self-established mesh network such as ZigBee. Then, the
information is collected to the platform, and the platform interconnects with the public
cloud to manage and centrally monitor resources. As mentioned above, street lamps
occupy rare pole position resources in cities. In addition to being used for lighting, street
lamp poles can also be used for other purposes.

In the smart firefighting solution, intelligent smoke sensors are used. Smoke sensors can
automatically report alarms when a fire occurs, helping us control fires on time. This
solution uses networks such as NB-IoT to transmit data, so the data can be uploaded to
the platform for processing. This solution also uses applications such as alarm handling,
remote muting, device self-check, and fire prevention linkage for fire management.

In the smart manhole cover solution, sensors such as accelerometers are installed under
manhole covers to monitor manhole data. These sensors are triggered when the manhole
cover is moved. When manhole covers are taken away, toxic gases in the sewers may
float up to the street. Therefore, gas detection sensors need to be placed near manhole
covers. The smart manhole cover solution is similar to the smart street lamp solution. It
can monitor a large number of manhole covers and implement intelligent O&M.

The last solution is the smart sanitation solution. This solution manages sanitation
personnel, vehicles, and garbage collection in real time. It supervises the working time,
routes, fuel consumption, and water spraying of sanitation vehicles, the status of garbage
bins, and the tracking of garbage collection in real time. In addition, real-time visualized
supervision refines sanitation management, standardizes operations, and makes appraisal
intelligent, making sanitation work orderly, effective, and controllable.

2.2 Smart Campus Solution

2.2.1 Common Problems
Smart campus is similar to smart city, because the IoT devices used by them are almost
the same. However, they are still two different scenarios.

Campuses are common in our daily lives. For example, Disneyland parks, zoos, industrial
parks of large enterprises, and technology parks. These campuses face a large number of
challenges.

In terms of management and operations, most traditional campuses are managed
manually. However, manual management is ineffective, crude, and prone to error. Some
unrelated personnel may be able to enter a campus due to the carelessness of the
security personnel. A large number of human resources are required to handle complex
tasks, which increases operational costs. These problems require campuses to become
more intelligent.

Trainee Guide for IoT Engineers Page 20

The first common problem that campuses meet is visitor management problem. Let's
take Huawei as an example. After arriving at a Huawei campus, visitors need to register
and obtain visitor cards at a guardhouse and wait for employees to accompany them.
This is time-consuming. 6,300 working days are estimated to be wasted in a year.
Similarly, employees need to swipe their cards at entrances and register when they forget
their cards. This wastes 7,800 working days in a year. Intelligent management and
control methods are urgently needed to help Huawei save labor costs.

Power is wasted in traditional campuses because lighting, fresh air, and air conditioning
systems are managed and controlled by facilities and property management personnel.
Electricity is wasted whenever someone forgets to turn off the lights or the air-
conditioner, or when someone turns on a light during the daytime instead of opening
curtains to let in sunlight. Power consumption accounts for about 60% of the total
operational cost of Huawei's campuses.

The preceding problems can be categorized into three major types. The first is high
operational costs of traditional campuses. The second is traditional campuses are mainly
managed by people. The last is poor employee satisfaction with campus services due to
the lack of a well-developed management system to coordinate various parts. Due to
lack of intelligent management, problems can only be resolved reactively after they
occur.

2.2.2 Solutions
To solve these problems, Huawei has designed an overall solution for campuses. The
overall architecture of the solution is divided into three parts. At the sensing layer are
various devices in smart campuses. The devices transmit data to the management
platform. The platform processes and analyzes the data and uploads it to the cloud to
provide services for users.

For visitor management, a visitor can make a reservation in advance. The visitor will then
receive an SMS containing a verification code. The visitor can show the verification code
to a security guard and obtain a temporary pass to visit the campus. In this way, the
visitor can save a lot of time.

As we mentioned, energy costs account for nearly 60% of the total cost. Therefore,
energy control is an important part of campus management. In this regard, Huawei's
solution is divided into four parts: power generation, distribution, utilization, and
management. In a smart campus, in addition to the mains, the solution uses PV to
generate more power. This method not only saves costs but also is environmentally
friendly. In terms of power distribution, the solution uses uninterruptible power supply
(UPS) to achieve a balanced power supply during peak and off-peak hours, thereby
reducing power costs.

For power utilization, the solution uses sensors to monitor environmental data. For
example, sensors can first check whether there are people in the room. If there are, the
lights and air conditioner are turned on. Then, sensors can check the temperature and
humidity and adjust the air conditioner to control the temperature and humidity. At the
same time, the solution can use smart meters to check overall energy usage and control
energy use. Last, in terms of power management, the solution can analyze the uploaded
data and design an appropriate solution to manage and control energy. This improves
energy utilization and reduces operational costs.

Trainee Guide for IoT Engineers Page 21

2.3 Smart Grid Solution
The whole process of electric power supply consists of six steps, from power generation in
a power plant to power consumption by users. The first step is power generation, which
is the production of electric power. Currently, the main power stations are thermal power
stations, nuclear power stations, and hydropower stations. The subsequent step, power
transformation, is a preparation for transmission by increasing or decreasing the voltage.
The higher the voltage, the smaller the transmission loss. Therefore, the voltage is
increased before transmission to reduce transmission loss. Later, before the electric power
is transmitted to each home, another power transformation is used to reduce the voltage.
The standard AC voltage in China is 220 V, and in some countries or regions, it is 110 V,
but the voltage for power transformation and transmission is at the kilovolt level.
Therefore, the voltage is decreased before the electric power is distributed to every home
or factory through the distribution system. After that, people can use electricity. To sum
up, the entire process of the electric power supply is power generation, transformation,
transmission, transformation, distribution, and consumption.

2.3.1 Common Problems
The difficulties and pain points facing electric power companies may be rare in China.
They may occur in regions outside China, such as Africa and Latin America. First, the line
loss is high, because they do not have advanced technologies to control the line loss rate.
In countries such as Japan and South Korea, their line loss rate was decreased to 4% to
5% as early as 12 years ago. In countries with large areas such as China and the United
States, the line loss rate has been decreased to 7% to 8%. But in some countries and
regions, the line loss rate is as high as 18% or 20%. It means that electric power
companies in regions with high line loss rate make 10% or more fewer profits than those
in regions with low line loss rate.

In addition, the cost and cycle of meter reading are problems. In Africa and Latin
America, electric power companies mainly use manual meter reading, which is costly and
error-prone.

Load balancing is also a problem, since there is no way to store electricity on a large
scale in the world. If electricity is produced but not used, it is wasted. Therefore, if the
power consumption and generation capacity of the area cannot be accurately estimated,
it is easy to cause a waste of power resources.

In addition to unbalanced power grid development in different regions, electric power
companies in different countries and regions raise different requirements. For example,
countries and regions in Africa and Latin America do not have the same comprehensive
infrastructure as China, North America, and Europe. Therefore, they may want to build
infrastructure first. They also want to shorten the electricity fee collection period and
reduce the line loss rate. Reducing line losses can bring them considerable direct income.
In China, Europe, and America, infrastructure is already comprehensive, so their goals are
to make grids safer, reduce power failures, and recover power supply quickly after a
power failure. These regions also have the problem of load balancing. They hope to
accurately and reasonably estimate power consumption, so they can guide power plants
to generate power. In addition, electric power companies in all regions want to improve
customer satisfaction, provide power saving suggestions, and provide power consumption
details for customers.

Trainee Guide for IoT Engineers Page 22

The major difference between a smart grid and a traditional grid is that a smart grid
establishes bidirectional information flows between power generation and consumption.
In a traditional power grid, only electric power is transmitted between power distribution
centers and users, and no information is exchanged. In a smart grid, this situation is
transformed. In addition to power transmission between power distribution centers and
users, information and data is also transmitted. Scheduling centers support intelligent,
real-time scheduling. They can schedule resources in each step of the power supply
process in real time, building an intelligent grid. In addition, new energy supplies and
services can be accessed to build green grids. For example, clean energy such as solar and
wind energy is used at the power generation side and new services such as charging piles
and electric vehicles are provided at the power consumption side. With these new energy
supplies and services, smart grids have evolved into a global energy Internet. Non-
renewable power generation, such as thermal power generation, will be gradually
replaced by renewable power generation. Global energy data will be exchanged on this
energy Internet to maximize resource utilization.

2.3.2 Solutions
We are gradually moving towards smart grids. Huawei's smart grid solution is called AMI.
AMI is short for Advanced Metering Infrastructure. The AMI solution can solve the pain
points of electric power companies. Smart metering replaces manual metering, improving
metering efficiency and accuracy and reducing metering costs. In addition, the accurate
data sent back by smart metering can be used to estimate the power consumption status
of each area or even each home. The subsequent power generation can be arranged
purposefully, the power consumption of users can be analyzed, and energy-saving
solutions can be provided for users.

To build fully connected grids, in addition to transmitting electric power, this solution
also needs to transmit data flows. Fully connected grids mean that all devices used in the
power transportation process are centrally managed and data generated by these devices
is uploaded to the cloud. The cloud centrally schedules the operation of the entire power
system. In addition, different new technologies are used in production, management, and
marketing of power grids, thereby building fully connected power grids that connect
numerous devices and feature high security, low latency, wide coverage, and low power
consumption.

2.4 IoV Solution (IoV and DRIS)
This section describes the IoV scenario that is closely related to our lives and introduces
the IoV and DRIS solutions.

2.4.1 Common Problems
The first problem is about safety. These are very common. For example, if lights are
flashing on dashboards but some drivers do not understand the fault details, they may
ignore the lights, disregarding the risks. Similarly, vehicles are mainly driven manually. In
foggy weather, low visibility makes driving dangerous. If a technology can help the

Trainee Guide for IoT Engineers Page 23

drivers identify road situations and drive cars automatically, driving experiences will be
greatly improved.

There are also some value-added services, such as insurance. The traditional vehicle
insurance pricing model is based on vehicles, that is, calculating premiums based on the
number of claims customers have made. But this mode is unreasonable. There is usually
only a small difference between the premiums of people with good driving habits and
those with bad driving habits. Vehicle insurance premiums should be calculated based on
drivers instead of vehicles. The premiums should be determined based on people's driving
habits.

2.4.2 Solutions
The technology that can solve the preceding problems is the IoV. IoV uses in-vehicle
devices and wireless communications technologies to utilize all vehicle information on
the information network platform and implement different functions. IoV is part of the
IoT. First, it has in-vehicle devices at the sensing layer. In addition, it uses wireless
communications technologies to transmit vehicle data to the platform for analysis. The
platform provides the data to applications for analysis and function implementation.

In addition, the IoV in the future will have edge computing features. Vehicles in the IoV
will be intelligent and can control the distances between them and other vehicles to
reduce accidents, regardless of whether other vehicles are intelligent or not. Vehicles in
the IoV can communicate with each other to improve traffic efficiency.

When discussing the IoV, we have to mention V2X, which is also called the vehicle-road
cooperation solution. It integrates digital technologies such as cloud, IoT, AI, and 5G to
implement efficient coordination between pedestrians, vehicles, roads, and clouds.

A vehicle is regarded as a device like a mobile phone or a computer. It senses all things
on the road, including other vehicles, pedestrians, roadside infrastructure, and networks
for information exchange, that is, V2V, V2P, V2I, and V2N.

In addition to the V2X, another concept to share with you is the Digital Road
Infrastructure Service (DRIS). The DRIS does not differ greatly from the V2X. The slight
difference between the two is that V2X focuses more on vehicles and the intelligence that
can be achieved by them, whereas DRIS focuses on a variety of roadside devices. DRIS
includes services on the cloud side and the edge side. DRIS on the cloud side provides
data analysis and collaboration with the edge side on the cloud platform. DRIS on the
edge side provides real-time service processing capabilities related to edge computing,
such as sensor data access and road event identification. The goal of DRIS is to connect
multiple roadside sensors to implement digital sensing of roads and provide useful traffic
information to traffic participants.

The development of the IoV is divided into three phases. The first phase is to meet the
requirements of entertainment and navigation. In this phase, vehicles are connected to
the Internet so drivers can listen to music online and obtain road information. The
navigation system can update road information in real time. In the second phase, IoV
pays more attention to vehicle status and collect information such as fault detection, fuel
consumption, and mileage. In the third phase, IoV can analyze surrounding environment
information through sensors installed on vehicles to achieve automated driving.
Currently, the development of the IoV industry is in the second phase and is moving
towards the third phase.

Trainee Guide for IoT Engineers Page 24

Intelligent vehicle devices can be installed by original equipment manufacturers (OEMs)
and aftermarket service providers. OEMs provide safety facilities and entertainment
devices before delivery. Aftermarket service providers provide auxiliary measures and
devices such as insurance, smart rearview mirrors, and in-vehicle Wi-Fi.

UBI is a new type of vehicle insurance in the IoV. UBI is short for usage-based insurance.
UBI determines premiums based on usage and driving habits of drivers. First, it analyzes
drivers' driving habits based on the data uploaded by the IoV and classifies them into
four categories: high-risk, poor-behavior, neutral-behavior, and high-value. Then, it sets
specific premiums for drivers based on how they score in these categories. UBI is fairer
than traditional insurance services. UBI can also encourage drivers to improve their
driving behavior through scoring and other methods.

In addition, there are a series of automatic toll collection services. These services are
more efficient than the electronic toll collection (ETC) that we are currently using. ETC
requires drivers to wait at toll gates for a short period of time, whereas automatic toll
collection is automatically performed based on vehicle driving tracks. There may be no
toll stations after automatic toll collection becomes commonplace. GPS positioning and
GIS systems are used to determine driving tracks of vehicles and determine vehicle tolls,
which makes our travel more convenient.

2.5 Industrial IoT Solution
This section focuses on the industrial IoT. The industrial scenario is always important in
the IoT, because a large number of products need to be manufactured. Improving the
efficiency of industrial manufacturing becomes particularly important. Therefore, it is an
inevitability that IoT technology will be applied in manufacturing to improve efficiency
and accelerate the development of the IoT.

2.5.1 Development Bottlenecks
In the process of pursuing more efficient industrial production, we have encountered
some bottlenecks. Our goal is to be fully connected, that is, to connect people, data, and
machines. When we shift our focus from production automation to full connectivity, what
we need to do is to make manufacturing more efficient, refined, and intelligent.
Therefore, we need to collect all vertical production information, from devices at the
sensing layer such as machine tools and mechanical arms to communications devices. All
the device data can be used so all the devices can be centrally managed.

In addition, we need to integrate different industries. Although there are many different
applications in the upper-layer industries, the devices used at the sensing layer in the
industrial field may be similar. Therefore, we can integrate these devices to implement
comprehensive connections between people, data, and machines. We will begin with the
collection of data used by the devices to construct the production IoT. We will use the
cloud platform and big data analytics to build an industrial IoT featuring device-cloud
synergy. After that, we will make O&M data on the cloud platform movable so that O&M
personnel can know the production status of devices in the factory anytime and
anywhere, thereby connecting all things in the industrial IoT ecosystem.

Trainee Guide for IoT Engineers Page 25

2.5.2 Solutions
How can we achieve full connectivity? We need to use various emerging ICT technologies.
First, we need to make the devices at the sensing layer intelligent. Devices using multiple
different communications protocols can be connected and communicate with each other,
thereby achieving collaborative operation between them.

In addition, networks need to meet the requirements of connections in large quantities
and in different scenarios. In the same industrial scenario, devices in different
environments or in different applications have different requirements for networks. For
example, when we control precision mechanical devices, we need networks with low
latency and high reliability. For video surveillance applications, networks must provide
high bandwidth. For metering applications, the network rate can be low and the network
cost must be low. All these devices are used in the same industrial scenario. Therefore,
we hope that networks can connect all these devices.

After the requirements of devices and networks are met, we need to process the collected
data to maximize data value. In this way, we can achieve intelligent coordination and
linkage between devices and full connectivity.

Based on the preceding ICT technologies, Huawei designs an overall industrial IoT
solution. Like other IoT solutions in the industry, the Industrial IoT solution is also divided
into four layers. At the sensing layer, various devices are used in the industrial field. At
the network layer, wired and wireless access modes are used, for example, Ethernet or
industrial IoT gateway. Most devices in the industrial field are huge and cannot be
moved. Therefore, wired connections are used to ensure the stability of data
transmission. Wireless connections will be gradually used to make the industrial IoT more
flexible.

The platform layer provides capabilities such as device access, device management, and
device data processing. It analyzes the data collected by devices, and transfers the
processing results to various applications at the application layer for display.

The industrial IoT solution has typical applications. The first is production visualization,
which is important in the industrial IoT. Production visualization means that data
collected by the platform is displayed in graphics or other easy-to-understand modes. It
can convert the data into a production management execution process and decision-
making basis that are easy to understand.

For the industry, production visualization can improve the production reliability of
factories and help enterprises better control equipment in the production process,
thereby allowing factories and enterprises to control costs more easily. In addition, it
provides valuable experience capital for product update, iteration, and development. For
plant managers and decision makers, production visualization is a comprehensive
decision-making tool that helps them better understand where problems occur, increase
production output, and reduce costs.

Different parts in industrial production applications, for example, process flow, process
operation efficiency, and production data sorting, can be presented in a visualized
manner.

The second application is asset locating. Asset locating is a common application in
campus and industrial scenarios, because warehouses are used to store assets in campus
and industrial scenarios. It is important to make the best use of every item in a

Trainee Guide for IoT Engineers Page 26

warehouse. We need to be able to locate the items easily and know their validity periods.
That's where asset locating and tracking comes in. Asset locating can be used in
campuses and industrial scenarios to help managers locate the assets that need to be
used.

In industrial scenarios, all transport vehicles or machine tools can also be located. The
location of a transport vehicle can be displayed on the platform and the shortest
transport path can be planned for the transport vehicle. Some industrial valuables also
need to be located. When these valuables are taken out of certain areas, the platform
can report alarms to supervisors.

How are locating and tracking performed? First, tags are attached to all objects to be
located. These tags contain wireless communications chips. Positioning base stations send
signals to the tags to determine the locations of the objects. In addition, different devices
are classified into the high-precision positioning scenario and low-precision positioning
scenario according to their application scenarios. For example, devices that do not need
to be moved frequently adopt low-precision positioning, and devices that often need to
be moved adopt high-precision positioning. The location information is reported to the
IoT platform and used in various applications, such as optimization of production
resource usage, and foolproof management and authentication of personnel.

2.6 Development Trend of IoT Applications
This section describes the development trends of IoT applications based on some
emerging technologies. IoT technology covers a lot of content because different
technologies are used at different layers of the IoT. For example, at the network layer, we
use communications technologies such as 5G. At the platform layer, we use technologies
such as AI for data processing.

There are seven emerging technologies, which can be called 5IABCDE for short. "5"
stands for 5G; "I" for IoT, "A" for AI, "B" for blockchain, "C" for cloud computing, "D" for
big data, and "E" for edge computing. These seven technologies are popular. All of them
are used in IoT application scenarios. This section uses several popular technologies as
examples to explain the development trends of IoT applications.

5G and edge computing can be applied to the IoT. In addition to providing ultra-high
transmission rates, 5G can provide ultra-low latency for things in the IoT. Edge
computing can also greatly reduce network latency. How do these two technologies
provide services for the IoT?

In the IoV scenario, these two technologies can provide low-latency services for assisted
driving or automated driving. In the IoV, low network latency is important. If the network
latency is too high, when there is a risk of collision, vehicles may not brake in time and
accidents may occur.

The same requirement needs to be met in remote surgery and industrial manufacturing
scenarios. If the latency is too high during remote surgery, doctors' operations cannot be
displayed quickly enough, which poses risks to patients. Furthermore, in the high-
precision industrial manufacturing field, a difference in one millimeter can have a great
impact. Therefore, we need to use lower-latency networks or technologies for remote
control. We use a combination of 5G or edge computing technology and IoT.

Trainee Guide for IoT Engineers Page 27

In addition, we use technologies such as big data, cloud computing, and AI. These
technologies and the IoT are related to each other. Take the human body as an example.
The IoT is mainly responsible for data collection. It functions like sensory organs of the
human body, such as the eyes, ears, and nose. We obtain data using big data technology.
We store the data in the cloud, which uses cloud technology. At the same time, AI
technology, which similar to the brain, is responsible for decision-making and control.
The relationship between big data, cloud computing, IoT, and AI is as inseparable as
different parts of the human body.

Among the four technologies above, AI and IoT are closely related. The combination of AI
and IoT is called AIoT. The data collected by the IoT can be used by AI, and a massive
volume of data is what AI needs most. The two complement each other and can provide
us with more intelligent services. Currently, the implementation process of most IoT
projects integrates AI. We are in increasing need of AI-based decision-making. AIoT
technology is no longer optional. In the future, IoT solutions that do not integrate AI
capabilities will become increasingly less competitive.

In addition to the new technologies mentioned above, other new technologies, such as
quantum computing, can be combined with the IoT. Although quantum computing
cannot replace traditional computing in the short term, its prospects are bright. It is the
future of computing, solving many problems that traditional computing cannot, such as
database search, large sample simulation, and machine learning. As an analogy,
traditional computing is a car, and quantum computing is a rocket. Although the rocket is
very fast, it cannot be widely used in our daily lives. Only when our living standards reach
a certain level can rockets be used as a means of transportation. The same is true with
quantum computing. It can only become widely used when we have developed other
technologies to a level similar to that of quantum computing.

There is also digital twin technology, which will be described in subsequent chapters.
Simply put, it is a simulation process of obtaining data using sensors and physical models.
It completes mapping in a virtual space to reflect the full lifecycle management of the
corresponding entity. We can use data to present our products in the virtual world. For
example, currently, O&M personnel cannot monitor the status of a high-speed train after
it leaves the station. Digital twin technology can construct a model on a computer based
on the train data, so that O&M personnel can view the running status of the train.

Digital twin technology can also be used in applications such as industrial IoT and smart
city to build models for better O&M management.

Trainee Guide for IoT Engineers Page 28

3 IoT Security Technologies

Security has always been the basis of technological development. Only by ensuring the
security of a technology can we develop it well. This is especially true for the IoT field,
because all things are connected in the IoT world. IoT development will be restricted if
we cannot resolve security issues.

This chapter describes problems faced by the IoT, Huawei's solutions to IoT security
problems, and typical applications of these solutions.

3.1 Typical IoT Security Cases
This section describes some problems encountered by the IoT in the security field.

The first is the Tesla incident. Tesla is the most successful company in the electric vehicle
market. Although Tesla is unrivaled in new-energy vehicle manufacturing, it faces
substantial security challenges. Electric vehicles will be used in the Internet of Vehicles
(IoV), which is one of the IoT applications. Therefore, security issues of the IoV are also
related to the IoT. In this incident, when the in-vehicle system was intruded into, the
attacker could remotely control the starting and stopping of the vehicle through the
network. This is extremely dangerous if the vehicle is driving.

The cause of the Tesla incident is that no protection was provided for local storage of key
information. Attackers could easily obtain the background remote communication
certificate and password, so they could obtain the in-vehicle system login password to
control the vehicle.

Some IoT-related security incidents have also occurred in China. One of them was the
Nanjing Environmental Protection Bureau incident. In this incident, someone intercepted
and tampered with environmental protection data at the near end of the network,
causing the uploaded data to be displayed as qualified. All the indexes displayed on the
monitoring platform of the Environmental Protection Bureau were normal, while the
cement plant's pollution levels significantly exceeded the allowed limit. The cement plant
evaded sewage charges worth millions of dollars through forged monitoring data,
causing serious environmental damage.

The cause of this incident is that encryption and integrity protection were not carried out
during data transmission from the gas detector of the cement plant to the RTU remote
terminal, which allowed the violation to be possible. This incident occurred at the
network layer of the IoT, in the form of tampering of environmental protection data
through network intrusion. There have been other security incidents at the network layer,
for example, the DDoS attack that occurred in the US.

Trainee Guide for IoT Engineers Page 29

DDoS, short for Distributed Denial of Service, is a common type of network attack.
Hackers control a large number of devices to attack a server, causing it to break down.
As a result, users cannot use the server. The DDoS attack in the US was launched using a
botnet composed of IoT devices.

In this DDoS attack incident, hackers controlled some IoT devices like network cameras,
video recorders, and routers. This incident paralyzed the Internet and caused network
outages in several cities in the US.

In the IoT field, security is a common issue that deserves our attention. Examining these
three events, we can see that IoT security issues often occur on the device and network
sides. Actually, they also occur on the platform and application sides. IoT security issues
are classified into four types based on the IoT architecture. In terms of industry
categories, security threats mainly include LPWA security threats and IoV security threats.
IoT security threats form a negative triangle model, and most of threats are on the device
side, where we lack effective measures to defend against security issues. IoT devices are
vulnerable to physical damage, for example, being forcibly dismantled. Because of power
supply restrictions, it is not possible to run an advanced encryption system on IoT devices.
Due to these two reasons, IoT security threats often target devices.

Moreover, as network technologies become increasingly advanced, more network attack
technologies are emerging, and the requirements for the capabilities of network attackers
are becoming lower. In the past, attackers needed to master a lot of knowledge to launch
network attacks. Nowadays, attackers can launch attacks with limited communications
technologies.

IoT security events increase alongside the development of the IoT. This requires us to
resolve IoT security issues while developing the IoT.

3.2 Huawei IoT Security Architecture
How can we solve the problems mentioned above? This section describes the solution
that Huawei provides.

Trainee Guide for IoT Engineers Page 30

Figure 3-1 IoT security solution architecture (see the Appendix for a
reference image)

Figure 3-1 illustrates the framework of the Huawei IoT security solution, which can be
summarized as 3T+1M. In the 3T+1M framework, T stands for technology, and M stands
for maintenance. The 3T indicates the different security technologies at the sensing layer,
network layer, and platform layer in the IoT architecture, and 1M means unified security
O&M at each layer. Through this framework, we can summarize Huawei's solutions in
the IoT security field.

The Huawei IoT security solution is focused on LPWA and IoV, since most IoT security
issues arise from these two fields. Of course, Huawei also supports other fields.

Huawei provides security applications for the three layers of the IoT architecture, from
the sensing layer and network layer to the platform layer. Huawei also provides
compliance at the bottom. Huawei has different security measures at different layers. It
adheres to the concepts of device authentication, pipe monitoring, and cloud analysis. It
uses device trustworthiness and identity authentication, pipe monitoring awareness, and
security policy orchestration and collaboration in the cloud to build a service-oriented IoT
security solution for customers. Huawei also uses unified security O&M and management
across all layers to ensure normal collaboration between layers.

The following describes the security measures used at each layer. FOTA, short for
firmware over-the-air, allows remote device upgrades. At the sensing layer, FOTA digital
signatures ensure the validity and integrity of firmware upgrades. The integrity of
upgrade packages is checked to ensure that the firmware version in use is secure and
reliable.

At the network layer, the transmission network may be intruded and data may be
tampered with. To protect the network and data, network transmission channels such as
L2PT and IPsec are used. In addition, the platform detects upstream data for abnormal
behavior and events in a timely manner.

At the platform layer, authentication is used to ensure that each device connected to the
platform and all uploaded data are secure. E2E authentication and transmission security
are carried out on the platform side. As shown in Figure 3-1, different devices or
personnel, such as gateways or devices at the sensing layer, development or O&M
personnel, and applications, must all be authenticated and authorized through different
networks and portals when they access the cloud platform. This eventually ensures secure
E2E data transmission of the IoT. The IoT platform may suffer from DDoS attacks.
Therefore, methods must be used to defend against DDoS attacks. The method is to
classify messages from devices by different priorities. If a DDoS attack occurs, the server
can then determine how to process messages from different devices according to the
congestion level. For example, when a server is in a low congestion state, it allows low-
priority devices to access the network later or discards low-priority packets. This ensures
that high-priority data can be sent to the server for normal communication.

Trainee Guide for IoT Engineers Page 31

3.3 Typical Huawei IoT Security Cases
This section describes typical applications of these solutions.

Here is a case related to bicycle sharing. The lock of a shared bicycle is an IoT device and
it has many security risks. First, most shared bicycles do not use secure encryption
methods, which allows for password forging and cracking. Some shared bicycles may use
encryption methods but consume high power, failing to meet battery requirements. To
address these issues, Huawei recommends DTLS+ with dual authentication to improve
confidentiality and reduce power consumption.

Second, some bicycle platforms and devices may not be collaboratively connected. As a
result, many malicious operations on bicycles are invisible to the platform, and the
platform cannot identify damaged bicycles. The HUAWEI CLOUD IoT platform
implements device-cloud synergy so that all operations on bicycles are visible on the
platform, helping reduce malicious behavior.

The last problem is malicious upgrades of lock firmware. Hackers can use forged servers
to upgrade lock firmware and change passwords to gain complete control of bicycles. To
prevent firmware and passwords from being maliciously upgraded or changed, the
HUAWEI CLOUD IoT platform uses lightweight trusted DICE to secure boot and trusted
measurement of the running state.

Trainee Guide for IoT Engineers Page 32

4 Common IoT Communications
Technologies

This chapter introduces knowledge at the IoT network layer. Communications
technologies at the network layer function as a medium for connecting the sensing layer
and platform layer. Communications technologies are the foundation of the IoT. If we
treat the IoT as a logistics system, then communications technologies are different modes
of transportation, for example, air, water, or land travel. Common communications
technologies can be divided into two categories: wireless and wired. Wireless technologies
can be further divided. For example, there are cellular networks used by operators, and a
series of short-range communications technologies like Bluetooth.

4.1 Wired Communications Technologies

4.1.1 Ethernet
Basically, Ethernet is a type of network that we plug into our computers with standard
network cables. Ethernet is the main local area network (LAN) technology of TCP/IP, and
is the most common communications standards used in the current LAN. In the IoT field,
Ethernet is widely used in industrial sectors and to provide wired access in a typical office
environment. Thanks to its low cost, Ethernet has been used to create industrial Ethernet.

Ethernet uses carrier sense multiple access with collision detection (CSMA/CD). CSMA
requires that a station listen on a channel before sending data and send the data only
when the channel is idle. However, if both stations detect that a channel is idle and start
to transmit data at the same time, a collision may occur. In addition, the channel status
may be incorrectly determined if data from another station is being transmitted and not
arrived at the station that performs the listening.

To address these issues, CSMA is further improved to enable a source station to continue
listening on the channel during the data transmission. A collision is determined if an
electromagnetic wave that exceeds an amplitude of a carrier signal sent by the source
station is detected on the channel. Once a collision is detected, the source station
immediately stops sending data and sends a series of blocking signals to the peer station
on the bus. In this way, the damaged frames can be terminated quickly, which reduces
the time and bandwidth. In other words, a station is required to detect collisions during
data transmission and once a collision is detected, stop data transmission immediately.
Such requirement is stipulated in CSMA/CD.

Trainee Guide for IoT Engineers Page 33

4.1.2 RS-232 and RS-485

Figure 4-1 RS-232 port diagram (see the Appendix for a reference image)

Anyone who has done embedded development before is likely familiar with RS-232. This
port is found on the rear of legacy desktop computers. RS-232 supports one-to-one
communications over short distances (less than 20 meters). RS-485 is an upgraded
version. RS-485 supports one-to-many transmission. Such a bus supports a maximum of
128 transceivers. The transmission rate and communication distance are also greatly
improved.

Table 4-1 Comparison between RS-232 and RS-485

Item RS-232 RS485

Communication
distance

Less than 20 m
1200 m theoretically; 300–500 m
in reality

Transmission
mode

Unbalanced transmission:
single-end communications

Balanced transmission: differential
transmission

Number of
transceivers

One-to-one communications
A maximum of 128 transceivers on
the bus

Transmission rate 38.4 kbit/s 10 Mbit/s

Table 4-1 lists the differences between RS-232 and RS-485. The first difference lies in the
transmission mode. RS-232 uses unbalanced transmission, which is single-ended
communications. RS-485 uses balanced transmission, which is differential transmission.
The second difference lies in the transmission distance. RS-232 is suitable for
communications between local devices, and the transmission distance is less than 20 m in
general. The transmission distance of RS-485 ranges from tens of meters to thousands of

Trainee Guide for IoT Engineers Page 34

meters. Third, RS-232 allows only one-to-one communication, whereas RS-485 allows up
to 128 transceivers on the bus.

4.1.3 Communication Serial Port Bus
In addition to RS-232 and RS-485, there is USB, which is used in serial port
communications. USB, short for universal serial bus, is used to connect external devices to
computers. Before the emergence of USB, there were lots of serial ports and parallel
ports. For example, keyboards, mouse devices, modems, printers, and scanners are all
connected to different ports. One port can be used to connect to only one device.
Computers are unlikely to support so many ports, resulting in insufficient scalability and
low speed. USB is designed for high speed, scalability, and ease-of-use.

Figure 4-2 Common USB types

USB is also widely used in the IoT. There are four common types of USB ports: Type-A,
Type-B, Micro-B, and Type-C, as shown in Figure 4-2.

4.1.4 M-Bus
M-Bus is short for Meter Bus. It is designed for remote metering and often used by
electricity, water, and gas meters. This technology is not common in China, but it is
widely used in Europe. M-Bus can power devices remotely without installing power
cables. Meters using M-Bus will not be affected in the case of a power outage at home.

4.1.5 PLC
PLC is short for power line communication. PLC transmits data on an electrical power
cable. How does it work? First, high-frequency signals that carry data are loaded onto the
current and transmitted through the wire. At the receiver end, an adapter separates the
high-frequency signals from the current and sends the signals to a computer.

PLC can be used only in near-end scenarios where the voltage does not change, since
high-frequency signals loaded onto the wire will disappear when the voltage on the wire
changes. In metering scenarios, data is loaded on the cable and uploaded to the
management terminals, which connect to base stations and upload the data to the
database through switches and servers. This technology is applied to data transmission

Trainee Guide for IoT Engineers Page 35

from metering terminals to management terminals. In the subsequent process, power
transformation and transmission are involved, where PLC is not applicable.

4.1.6 Comparison of Wired Communications Technologies

Table 4-2 Comparison of wired communications technologies

Communication
Mode

Characteristics Application Scenario

Ethernet
Comprehensive protocols, universal,
cost-effective

Intelligent terminals

RS-232
One-to-one communications, cost-
effective, short transmission distance

A few instruments,
industrial control

RS-485
Bus topology, cost-effective, strong
anti-interference capability

Industrial instruments,
meter reading

USB
One-to-one communications,
universal, fast transmission

Smart home, office, mobile
devices

M-Bus
Designed for meter reading, common
twisted-pair cables, strong anti-
interference capability

Industrial energy
consumption data
collection

PLC
For power line communication, wide
coverage, easy installation

Power grid transmission,
electricity meters

Table 4-2 lists the comparison of wired communications technologies. Most of the wired
communications technologies are used in industrial sectors and public utilities. In the IoT
field, moveable devices account for a large proportion. Therefore, there are relatively few
application scenarios for wired communications. More data is transmitted wirelessly.

4.2 Wireless Communications Technologies

4.2.1 Short-Range Wireless Communications Technologies
4.2.1.1 Bluetooth

Bluetooth is everywhere in our daily lives. It is used by mobile phones, computers, tablets,
and other devices. The Bluetooth technology was developed by the telecom giant
Ericsson in 1994 as an alternative to RS-232 data lines. It can connect multiple devices,
without data synchronization issues. In the IoT, devices like smart watches and smart
scales all use Bluetooth. Bluetooth used for transmission ranges from about 10 cm to 10
m, which is relatively short compared with other wireless communications technologies. It
provides a high transmission rate up to 1 Mbit/s.

Trainee Guide for IoT Engineers Page 36

Figure 4-3 Bluetooth working mode

The latest Bluetooth, 5.0, supports a transmission rate of up to 3 Mbit/s and can transmit
over about 300 meters. This technology can be divided into Bluetooth Basic
Rate/Enhanced Data Rate (BR/EDR) and Bluetooth low energy (BLE). The BR/EDR type
supports only point-to-point communications, whereas BLE supports point-to-point,
broadcast, mesh, and other modes of communications. The BLE type is mainly used in IoT
scenarios for data transmission among multiple devices.

4.2.1.2 Wi-Fi
Wi-Fi is widely used for daily Internet access at home or in the office. Wi-Fi usually uses
the 2.4 GHz and 5 GHz frequency bands to provide different services for different devices.

Wi-Fi has a longer range than earlier versions of Bluetooth. It also supports one-to-many
connections and fast transmission. However, it has poor security and stability. You likely
have experience with this in your daily life, for example, video freezing when watching a
video, and long delay when playing games. The delay may be 20 ms to 30 ms, or even
100 ms to 200 ms. Wi-Fi also uses a lot of power.

Similar to Bluetooth, there is a next generation Wi-Fi standard, Wi-Fi 6. This version
supports a transmission rate of 9.6 Gbit/s and the latency is kept down to 20 ms.

Figure 4-4 Wi-Fi working mode

Trainee Guide for IoT Engineers Page 37

4.2.1.3 ZigBee

Figure 4-5 ZigBee working mode

ZigBee features low consumption. Figure 4-5 shows the ZigBee working mode. As shown
in Figure 4-4, Wi-Fi devices can only be connected to access points (APs) or master
concentrators. However, ZigBee is different. ZigBee allows for direct data transmission
between devices.

ZigBee networking is easy. If the AP in a Wi-Fi network is faulty, the entire network
breaks down. This will not happen in a ZigBee network, because each device on a ZigBee
network functions as a relay. If a device fails, the network adjusts on the fly to find
another device that can take its place. The name ZigBee is derived from the waggle
dance that honey bees perform through movements such as zigzagging to communicate
the location of pollen. In other words, the waggle dance can be thought of as their
communications network. This is similar to easy networking of ZigBee.

The cost of a ZigBee module is as low as US$2. The transmission rate is 20 to 250 kbit/s,
which is very low when compared with Wi-Fi. However, ZigBee lacks robust compatibility
and is difficult to maintain.

4.2.1.4 Z-Wave
Z-Wave is similar to ZigBee, but Z-Wave is more reliable. In addition, Z-Wave is not open-
source. Z-Wave chips can be obtained only from Sigma Designs. In the initial design, the
Z-Wave technology was intended for wireless control of smart home appliances. Data
was transmitted in a small data format and the transmission rate of 40 kbit/s was
adequate. When the technology was first utilized, a rate of 9.6 kbit/s was used.
Compared with other radio technologies of the same type, Z-Wave uses a lower
transmission frequency, can transmit over longer distances, and is priced competitively.

Trainee Guide for IoT Engineers Page 38

4.2.1.5 Comparison of Short-Range Wireless Communications Technologies

Table 4-3 Comparison of common short-distance wireless communication
technologies

 Bluetooth Wi-Fi ZigBee Z-Wave

Frequency
band

2.4 GHz
2.4 GHz

5 GHz

868 MHz/915
MHz, 2.4 GHz

868.42 MHz
(Europe)

908.42 MHz
(USA)

Transmission
rate

1–3 Mbit/s
(24 Mbit/s
over 802.11
links)

802.11b: 11
Mbit/s

802.11g: 54
Mbit/s

802.11n: 600
Mbit/s

802.11ac: 1
Gbit/s

802.11ax: 9.6
Gbit/s

868 MHz: 20 kbit/s

915 MHz: 40 kbit/s

2.4 GHz: 250 kbit/s

9.6 kbit/s or 40
kbit/s

Typical
distance

1–300 m 50–100 m
2.4 GHz band: 10–
100 m

30 m (indoor) to

100 m (outdoor)

Typical
application

Data
exchange
between
nearby nodes
such as a
mouse,
wireless
headset,
mobile
device, and
computer

WLAN, high-
speed Internet
access at
home and
other indoor
areas

Home automation,
building
automation, and
remote control

Smart home
appliance,
monitoring and
control

This section compares the four short-range wireless communications technologies.
Bluetooth and Wi-Fi have higher transmission rates. Earlier versions of Bluetooth only
support one-to-one connections, whereas Wi-Fi supports one-to-many. Bluetooth is
mainly used on devices such as mouse devices, headsets, and mobile phones, whereas
Wi-Fi is mainly used for high-speed Internet access at home or in other indoor
environment. ZigBee and Z-Wave feature low transmission rates and multiple
connections. They are often used in IoT fields such as home automation, smart home,
and smart building. They are unlikely to be used outside of the IoT, because of their low
transmission rate.

Trainee Guide for IoT Engineers Page 39

4.2.2 Cellular Mobile Communications Technology
4.2.2.1 2G

2G has been around for a long time. The emergence of 2G marks the origin of digital
communications. The full name of 2G is Global System for Mobile Communications, or
GSM. On a 2G network, we can make calls and send SMS messages. Later, GPRS
emerged. It is also known as 2.5G. It has a higher transmission rate than GSM, and it can
be regarded as an upgrade to GSM.

4.2.2.2 3G
A 3G network provides a higher data transmission rate, which can reach hundreds of
kbit/s. Over a 3G network, users can make video calls and watch TV programs using
mobile phones. In China, three major operators use different standards for 3G networks
separately: CDMA2000, WCDMA, and TD-SCDMA. HSPA+, the latest WCDMA technology
from China Unicom, supports a maximum transmission rate of 42 Mbit/s. So far, HSPA+
is still used in most video data transmission fields.

4.2.2.3 4G
HSPA+ in 3G can be used to transmit video data, but 4G is required to transmit HD video.
Although 5G is now popular, most of our mobile phones still use 4G. Over a 4G network,
users can use phones to stream video and listen to music.

In the 4G network, LTE-Cat is a different level of 4G. Cat stands for category. Each
different category refers to a different transmission rate level supported by the device
when accessing a 4G network. Each level specifies the maximum transmission rate that
the device can reach. In the early days of 4G, devices were category 4, but now most of
the 4G devices are category 6. Module chips for devices at different levels have different
prices too.

Table 4-4 LTE UE categories

Level
Downlink Rate

(Mbit/s)
DL-MIMO Uplink Rate (Mbit/s)

1 10 1 5

2 50 2 25

3 100 2 50

4 150 2 50

5 300 4 75

6 300 2 or 4 50

7 300 2 or 4 150

8 1200 8 600

9 450 2 or 4 50

Trainee Guide for IoT Engineers Page 40

Level
Downlink Rate

(Mbit/s)
DL-MIMO Uplink Rate (Mbit/s)

10 450 2 or 4 100

In the IoT field, category 1 UEs are widely used because some devices demand high
network rates, although most devices use LPWA. UE category 4 or later provides a higher
rate, but its modules are too expensive for IoT devices. It is more cost-effective to use UE
category 1.

UE category 1 supports a downlink rate of up to 10 Mbit/s, enabling IoT devices with
lower power consumption and costs to connect to LTE networks. LTE operators around
the world deploy LTE networks based on 3GPP Release 8 or later. As such, operators can
simply reconfigure parameters to permit the access of UE category 1 without needing to
upgrade the networks.

4.2.2.4 5G
5G is the fifth-generation mobile communications network. 5G's theoretical maximum
transmission rate can reach 10 Gbit/s. Three 5G application scenarios are defined: eMBB,
which is defined by a rate of up to 10 Gbit/s; mMTC, which refers to support for up to 1
million connections per square kilometer; uRLLC, for when latency has to be kept down
to 1 ms. Among the three scenarios, eMBB is closely related to users because it can
provide high-bandwidth Internet access rates. The other two scenarios are closely related
to the IoT. Massive connections and ultra-low latency can help improve the service
capability of the IoT in many applications.

4.2.2.5 Comparison of Cellular Mobile Communications Technologies

Table 4-5 Comparison of cellular mobile communications technologies

 2G 3G 4G 5G

Frequency
band

Authorized
frequency
band

(mainly 900
MHz)

Authorized
frequency band

(mainly 900 MHz
and 1800 MHz)

Authorized
frequency band

(1800–2600
MHz)

Authorized
frequency band:

C-band

mmWave

Transmission
rate

GSM: 9.6
kbit/s

GPRS: 56-114
kbit/s

TD-SCDMA: 2.8
Mbit/s

CDMA2000: 3.1
Mbit/s

WCDMA: 14.4
Mbit/s

Downlink

Category 6/7:
300 Mbit/s

Category 9/10:
450 Mbit/s

10 Gbit/s

(Balong 5000
chips

support a
downlink rate
of 4.6 Gbit/s
and an uplink
rate of 2.5
Gbit/s)

Trainee Guide for IoT Engineers Page 41

 2G 3G 4G 5G

Typical
application

POS
terminals and
smart
wearables

Vending
machines, smart
home appliances

Mobile terminals

AR, VR, assisted
driving,
automated
driving, and
telemedicine

Table 4-5 lists the comparison of the cellular mobile communications technologies.
Technology continues to evolve, and the evolution from 2G networks to 5G networks
means higher frequency band (from 900 MHz to millimeter wave) and transmission rate.
Different technologies have different applications. We should choose the most
appropriate network, not necessarily the best one. For example, there is no need to use
more advanced networks for POS terminals or vending machines, since 2G and 3G can
fully support their functions. 5G is relatively expensive, so it is not necessarily the best
match for all solutions.

4.2.3 LPWA Communications Technologies
4.2.3.1 Sigfox

Sigfox is the name of an IoT technology startup company in France, and is also the name
of the LPWA communication technology developed by the company. Sigfox is designed
for low-throughput projects. It can maintain stable data connections with less
transmission power (50 to 100 microwatts). Sigfox exists to store the massive amount of
data generated by IoT devices, but it is not sufficiently trusted for data storage and
information security. All these make Sigfox not as popular as LoRa.

4.2.3.2 LoRa
LoRa is short for long range. Different from Sigfox, LoRa is maintained and managed by
the LoRa Alliance. The LoRa technology was developed by Semtech. With joint efforts of
the LoRa Alliance, Semtech developed LoRaWAN, which is applied to the LPWA field.
LoRaWAN is an ultra-long-range wireless transmissions solution based on spread
spectrum technology. LoRaWAN mainly runs on unlicensed frequency bands. The
application of LoRa includes automatic meter reading, smart home appliance, building
automation, wireless warning and security systems, industrial monitoring and control,
and remote irrigation systems.

4.2.3.3 NB-IoT
NB-IoT was first proposed by Huawei and Vodafone. Later, companies such as Ericsson
and Qualcomm joined its development. NB-IoT takes advantages of existing cellular
networks. It only needs about 180 kHz of bandwidth and can be directly deployed in the
existing cellular networks, greatly reducing the cost for operators.

4.2.3.4 eMTC
eMTC was proposed by Ericsson based on 4G networks. It is mainly used in IoT scenarios
that require deep coverage and a considerable number of connections. Compared with
NB-IoT, eMTC has a higher rate, but provides less coverage and requires more power. It

Trainee Guide for IoT Engineers Page 42

supports voice communications, making it popular in scenarios where voice
communications are required.

4.2.3.5 Comparison of LPWA Technologies

Table 4-6 Comparison of LPWA technologies

 SigFox LoRa NB-IoT eMTC

Frequency
band

Sub-GHz
unlicensed
frequency band

Sub-GHz
unlicensed
frequency
band

Mainly sub-GHz
licensed
frequency band

Sub-GHz
licensed
frequency
band

Transmission
rate

100 bit/s 0.3–5 kbit/s < 250 kbit/s < 1 Mbit/s

Typical
distance

1–50 km 1–20 km 1–20 km 2 km

Typical
application

Smart home
appliances, smart
electricity meters,
mobile healthcare,
remote
monitoring, and
retail

Smart
agriculture,
intelligent
building, and
logistics
tracking

Water meters,
parking, pet
tracking, garbage
disposal, smoke
alarm, and retail
devices

Shared
bicycles, pet
collars, POS
terminals, and
smart
elevators

Table 4-6 lists the comparison of LPWA technologies. Sigfox and LoRa run on the sub-
GHz unlicensed frequency band. Sub-GHz means that the frequency is below 1 GHz,
which mainly refers to the frequency band from 27 MHz to 960 MHz. Sub-GHz is an ideal
choice for long-range, low-power-consumption communications. Why? Given the same
power, higher frequencies are less able to pass through physical obstacles. Devices in
LPWA scenarios, such as electric meters or water meters, are often placed deep
underground, so penetration is important. They need to run on lower frequency bands.

As listed in Table 4-6, NB-IoT mainly runs on Sub-GHz licensed frequency bands, but
some NB-IoT networks run on frequency bands higher than 1 GHz. The specific reasons
will be explained in the following sections.

The differences between LoRa and NB-IoT are as follows:

 Different lineups

LoRa is developed by Semtech (an American company), and NB-IoT is a standard
formulated by 3GPP. The upstream and downstream industry chains of LoRa are
basically controlled by Semtech. However, the entire communications industry is
engaged in the NB-IoT upstream and downstream industry chains. For example,
Huawei, Qualcomm, Samsung, and MediaTek are all working on NB-IoT chip
modules.

 Different frequency bands

Trainee Guide for IoT Engineers Page 43

NB-IoT uses licensed frequency bands, whereas LoRa uses unlicensed frequency
bands.

In China, licensed frequency bands are authorized by the Ministry of Industry and
Information Technology (MIIT). Only authorized operators can use these frequency
bands.

Unlicensed frequency bands can be used by anybody. If individuals or enterprises use
the LoRa working frequency band for other purposes, severe interference will be
caused to LoRa devices in that region, even making the entire LoRa network
unavailable.

NB-IoT networks can provide better quality over LoRa networks.

 Enterprises need to build their own LoRa networks, whereas NB-IoT networks are
built by operators and ready for use.

Operators do not operate LoRa networks. If enterprises want to use LoRa networks,
they need to purchase a full set of network operations software and hardware, such
as base stations, network devices, and servers, and build and operate networks by
themselves.

Currently, the three major operators in China have deployed base stations and NB-
IoT networks. Enterprises only need to purchase NB-IoT SIM cards from operators
and insert them into devices equipped with NB-IoT modules.

 What are the advantages of LoRa?

LoRa does not show any advantage for 90% of enterprises. However, if enterprises
want to use the IoT in rural areas, remote mountainous areas, and independent
factories (such as smart farms and smart factories), where there are no NB-IoT
networks, they need to build LoRa networks by themselves.

In addition, large enterprises or governments who are very sensitive to data security
might prefer to build their own LoRa networks and maintain them by themselves.

These are the major differences between NB-IoT and LoRa.

4.2.4 Wireless Communications Technologies

Trainee Guide for IoT Engineers Page 44

Figure 4-6 Comparison of wireless communications technologies (see the
Appendix for a reference image)

All these three types of wireless communications technologies can be applied to the IoT.
How do we select the right technology for a given application?

Figure 4-6 illustrates which technology works best for different scenarios.

The two axes in Figure 4-6 are the transmission rate and transmission distance, which
correspond to major requirements for different IoT scenarios. There are three types of
data rates: high, medium, and low. For example, Internet of Vehicles (IoV) requires a high
data rate; smart logistics and vehicle management require a medium data rate; metering
requires very little data transmission. These scenarios can be further divided based on the
transmission distances that must be supported to get six types of networks. As mentioned
above, the most appropriate technology should be selected for a specific application. In
addition to the transmission distance and transmission rate, costs must be considered, in
order to maximize the return on investment.

Trainee Guide for IoT Engineers Page 45

5 NB-IoT Communications Technologies
and Solutions

This chapter describes the key technologies and features of NB-IoT, as well as some NB-
IoT solutions. IoT scenarios are different from the traditional Internet used by mobile
phones and computers. What are the characteristics of IoT in wireless communications
scenarios? First, IoT devices at the sensing layer send and receive data packets that are
small and transmitted infrequently. Some of them may send less than 10 bits of data in
an entire day. Second, these devices need to conserve power, even during
communications, in order to prolong their service life.

To sum up, small packets are occasionally transmitted through passive devices. The
communications network needs to run on very little power and cover a wide area, which
is why we call this an "LPWA" or "low power wide area" scenario.

In LPWA scenarios, the most popular technology is NB-IoT. NB-IoT is widely used in
public utilities and city management. It is important to learn NB-IoT technical details and
solutions.

This chapter describes the development, key technologies, and solutions of NB-IoT.

5.1 NB-IoT Standards Evolution and Industry Development

5.1.1 Evolution of NB-IoT Standards
NB-IoT was proposed by Huawei and Vodafone, and vendors such as Qualcomm and
Ericsson joined later. NB-IoT evolved out of NB-M2M, and was officially named NB-IoT in
2015. In 2016, the NB-IoT standards were officially frozen, but it did not stop evolving.
Many new features were introduced in R14 in 2017. NB-IoT R14 has a higher
transmission rate and supports site positioning and multicast. At the latest conference on
July 9, 2020, NB-IoT was incorporated into the overall 5G plan.

This event was very important for NB-IoT. It indicates that IoT devices that access the
network through NB-IoT can connect to the 5G core network and use 5G services such as
edge computing and network slicing. However, the current NB-IoT does not support
access to 5G networks. It still needs evolution.

Trainee Guide for IoT Engineers Page 46

5.1.2 LPWA Technologies Adopted by Global Operators

Figure 5-1 LPWA technologies adopted by global operators

As shown in Figure 5-1, during the selection of LPWA technologies, most operators
choose to deploy NB-IoT networks first and then add an eMTC network later. This is
because they would rather deploy a network that provides entirely new functions. Before
the emergence of NB-IoT, there were no LPWA networks, and there were no networks
specially designed for IoT devices.

The operator networks we are using today are designed for human beings. To facilitate
communications between human beings, these networks provide voice communications
and are always being optimized for higher and higher transmission rates. In contrast, NB-
IoT networks provide very slow transmission rates. User experience would be poor if we
tried to use NB-IoT networks for our mobile phones. However, NB-IoT networks are
suitable for devices, since these devices are typically widely separated, need to run on
limited power, and do not need to transmit much data. As for the eMTC network, it has a
higher rate than NB-IoT and supports voice communications. It is similar to a 2G network
that way. eMTC can be used to replace an old 2G network, but it is not as urgent as NB-
IoT. This is why most operators choose to deploy NB-IoT first.

5.1.3 NB-IoT Spectrum Selections of Global Operators
In addition to technology selection, there is another problem that operators must
consider, spectrum selection. The network frequency band must be low enough to meet
requirements for both coverage and penetration. IoT devices at the sensing layer, such as
gas meters or water meters, are often placed in cabinets in kitchens. They need
frequencies with strong penetration.

Trainee Guide for IoT Engineers Page 47

Figure 5-2 NB-IoT spectrum selections of global operators

A lower frequency band means stronger penetration. As shown in Figure 5-2, most
operators deploy networks on the sub-GHz frequency band, on frequencies ranging from
700 MHz to 900 MHz. A few operators like China Unicom deploy their networks on the
1800 MHz band. NB-IoT networks are mainly deployed on the sub-GHz frequency band,
but not all of them.

NB-IoT networks are based on 4G LTE networks. Operators can upgrade some 4G base
stations to function as NB-IoT base stations. The case is different for China Unicom,
because China Unicom's 4G base stations were upgraded from 3G base stations. They can
directly upgrade their 3G 1800 MHz base stations to support NB-IoT, saving a lot of
money. This is why China Unicom choose to deploy NB-IoT networks on the 1800 MHz
frequency band.

5.1.4 NB-IoT Industry Development
In addition to network technologies, base stations, and frequency bands, chips that
support connections between devices and base stations are required. Huawei launched
Boudica 120 chips as early as R13. This chip supports the sub-GHz frequency band, but
not mobility features introduced since R14. Huawei launched Boudica 150 chips to
support the new R14 features.

Trainee Guide for IoT Engineers Page 48

Figure 5-3 NB-IoT ecosystem partner list

Figure 5-3 shows the application of NB-IoT technologies. NB-IoT involves many fields like
water meters, gas meters, street lamps, and smart parking. The following sections
describe some NB-IoT solutions.

5.2 Key NB-IoT Technologies
This section describes the key technologies of NB-IoT.

NB-IoT stands for Narrowband Internet of Things. Why do we say narrowband? Its
system bandwidth is just 180 kHz, which is even smaller than the 4G guard bandwidth.
NB-IoT networks are based on 4G networks. NB-IoT uses the same OFDMA and SC-
FDMA techniques for uplink and downlink multiplexing. Although NB-IoT is based on 4G
LTE, NB-IoT is designed for a much lower data rate and to run much less bandwidth than
a 4G network.

Many of the parts of a 4G network have been stripped out for NB-IoT. For example, NB-
IoT has only two physical channels and one signal in the uplink and three physical
channels and two signals in the downlink. The reduction of channels and signals is to
achieve wider coverage with less power and for less money.

Trainee Guide for IoT Engineers Page 49

The following sections describe the four key features of NB-IoT and the technologies
involved in these features.

5.2.1 Ultra-Low Cost
5.2.1.1 NB-IoT Deployment Modes

NB-IoT can be directly deployed on existing operator networks to save money. There are
three deployment modes. The first is standalone deployment, which means that NB-IoT
does not rely on existing LTE networks. Instead, GSM frequency bands are re-farmed. The
channel bandwidth of GSM is 200 kHz, which is more than enough for the 180 kHz
needed for NB-IoT.

Figure 5-4 Standalone deployment

The second is guard band deployment. NB-IoT can be deployed on the guard band of the
existing 4G frequency band, taking advantage of existing idle resources.

Figure 5-5 Guard band deployment

The third is in-band deployment, where NB-IoT is directly deployed in the 4G frequency
band. In a 4G network, the frequency and time domains are divided into small resource
blocks. NB-IoT is designed to be fully compatible with 4G. The bandwidth of each small
resource block in 4G is 180 kHz. That is why the system bandwidth of NB-IoT was
designed to be 180 kHz. Regardless of what deployment mode is used, NB-IoT does not
depend on signal resources of any system.

Trainee Guide for IoT Engineers Page 50

Figure 5-6 In-band deployment

This is one of the reasons for the ultra-low costs. Due to technical limitations, NB-IoT
cannot be deployed in the in-band or guard band of the LTE system. Therefore,
standalone deployment is more popular recently.

5.2.1.2 Chip Design
The ultra-low cost is also partly thanks to some functions in the chip design being
simplified. Huawei has rolled out Boudica 150 chips dedicated for the IoT through single-
antenna, FDD half-duplex, and the like. For NB-IoT, single-antenna and FDD half-duplex
are enough. This simplified design reduces the cost of NB-IoT modules.

5.2.2 Ultra-Low Power Consumption
NB-IoT supports eDRX and PSM. Discontinuous reception, or DRX is a paging mode used
by many mobile phones. What type of paging should the mobile phone use to ensure
that messages can be monitored in real time? Does that mean the mobile phone has to
be waiting to be paged all the time, like a student in class waiting for the teacher to call
on them?

Figure 5-7 DRX working principles

However, this waiting uses a lot of power. DRX addresses this issue. The blue pulse shown
in Figure 5-7 indicates that the mobile phone is being paged. After each paging message
is received, the mobile phone enters the IDLE state and disables the receiver, like a
student taking brief a nap in class. In DRX mode, the interval between each paging is
called a DRX period, which can be 1.28s, 2.56s, 5.12s, or 10.24s.

Trainee Guide for IoT Engineers Page 51

Figure 5-8 eDRX working principles

DRX still uses too much power for IoT devices. Even if you only make calls or send SMS
messages on a mobile phone, you still need to charge once every day in most cases, or at
least every couple of days. IoT devices need to last several years or even more than a
decade on a single charge. That why we developed eDRX based on DRX.

As shown in Figure 5-8, eDRX introduced a paging time window (PTW). Within each
PTW, an IoT device makes three paging attempts, at the same interval as the DRX period.
After these three paging attempts, the device enters sleep mode for a long time. This
period is called an eDRX cycle. An eDRX cycle can be up to 2.92 hours long. Operators
can set the eDRX cycle based on the actual situation of IoT devices and required data.

Figure 5-9 PSM working principles

However, even eDRX does not save enough power for some IoT devices, which is why
PSM was introduced. With PSM, the sleep period can be up to 310 hours, or about 13
days, as illustrated in Figure 5-9. With PSM, if the service platform at the application
layer delivers commands to a device, the device will not receive these commands
immediately. These commands are temporarily stored on the IoT platform and will be
issued after the device wakes up from sleep mode.

These three modes correspond to different IoT scenario requirements. For example, DRX
is good for shared bicycles, because users do not want to wait for as long as 5 minutes
before a bicycle automatically unlocks. A 5-minute waiting duration is required if eDRX is
used. But eDRX is fine for scenarios such as logistics monitoring, because goods do not
need to be monitored in real time during transport. You only need to check their location
at certain intervals. PSM is good for water or electricity meters, since you only need to
check the data on these devices about twice a month. NB-IoT low power consumption
modes are closely related to scenarios. Developers need to select the power saving modes
for different application scenarios.

5.2.3 Ultra-Wide Coverage
NB-IoT provides 20 dB better coverage than GPRS. That is three times as much coverage,
and that is why NB-IoT signals can penetrate through physical obstacles better too. How

Trainee Guide for IoT Engineers Page 52

does NB-IoT expand its coverage? In the downlink, NB-IoT enhances reliability through
repeated transmission for more gain.

Figure 5-10 Increased power spectral density

In the uplink, NB-IoT also increases the gain through repeated transmission, just like it
does in the downlink. In addition, NB-IoT uses a single subcarrier for transmission, a 15
kHz subcarrier. This is different from that of 4G. In 4G, 180 kHz is required at least for
every transmission. So for any given amount of transmission power, you get better gain
with narrowband, as shown in Figure 5-10. This is one of the reasons why NB-IoT can
provide such wide coverage.

5.2.4 Massive Connections
What is the difference between the traffic model of IoT devices and that of mobile
phones? IoT devices are vastly more numerous, but each device sends only very small
data packets and latency is generally not a serious issue. To ensure the communications
quality for all users, a base station can only serve a limited number of users. IoT devices
do not require especially high quality communications, so more devices can be connected
to the same base station. A single base station can handle up to 50,000 devices, partly
because many of them are in the dormant state.

5.3 NB-IoT Solutions
Figure 5-11 shows the overall architecture of the NB-IoT solution. This architecture can
be associated with the IoT architecture in the previous section. NB-IoT devices are
deployed at the sensing layer. NB-IoT base stations are at the network layer. The IoT
platform is at the platform layer. A variety of applications are provided at the application
layer.

Figure 5-11 NB-IoT solution architecture (see the Appendix for a reference
image)

Trainee Guide for IoT Engineers Page 53

The following section describes some NB-IoT applications from the perspective of the
overall architecture of this solution.

Figure 5-12 Smart parking (see the Appendix for a reference image)

The first case is smart parking, which is mentioned in the previous section too. Broadly
speaking, there are two main types of parking: roadside parking and indoor parking.
Roadside or indoor, there are all sorts of issues. For example, it is difficult to locate
parking spots due to poor signal. The price of vehicle detectors is driven up by the
expensive communications modules they require, and they require a lot of electricity to
keep running.

NB-IoT eliminates the need for these expensive communications modules. These NB-IoT
modules and base stations can also be used for a range of other applications as well.
With NB-IoT, all of the devices in the entire city can be connected to the same network
for easier maintenance and management. Thanks to the low power consumption of NB-
IoT, the device batteries last a long time.

Trainee Guide for IoT Engineers Page 54

Figure 5-13 Shared bikes (see the Appendix for a reference image)

The next use case is shared bikes. Before NB-IoT locks were introduced, bike sharing
relied on mechanical locks and GPRS electronic locks. These two types of locks are not
easy to use. Mechanical locks rely on static passwords are used. A bicycle can be used by
anyone who knows the password. This is also true for GPRS electronic locks, which are
expensive and difficult to bill for use, resulting in poor user experience.

To achieve low power consumption and reduce costs, Huawei uses NB-IoT for
communications.

Figure 5-14 Smart street lamps (see the Appendix for a reference image)

NB-IoT applications are also popular in smart street lamps and smart meter reading.
Similar to the previous two cases, NB-IoT reduces the cost of solutions, improves use
efficiency, and unifies management for enterprises or companies.

Figure 5-15 Smart meter reading (see the Appendix for a reference image)

Trainee Guide for IoT Engineers Page 55

6 5G Communications Technologies and
Solutions

This chapter describes the key technologies and solutions of 5G communications
technologies in wireless communications. 5G is a popular cellular wireless
communications technology. The launch of 5G paved the way for a big lineup of mobile
phones to adopt this technology. This chapter introduces the new technologies and
transformations that 5G brings to the mobile Internet and IoT.

6.1 5G Standards Evolution and Industry Development
Over the past 10 years, operators and vendors have released digital and intelligent
transformation strategies. 5G signals the most recent milestone in digital transformation
as we move towards a fully connected, sensing, and intelligent society. 2025 will be a
major turning point for the world as envisioned by Huawei's Global Industry Vision (GIV)
2025, which analyzes the future goals of key industries. Some of the findings indicate
that:

 Smart home: 14% of the world's households will have smart home robots.

 AR/VR: The number of global VR/AR users will reach 337 million, and the number of
enterprises using the same technologies will increase to 10%.

 Smart manufacturing: There will be an estimated 103 robots for every 10,000
employees.

 AI: 97% of large enterprises will use AI to create greater value.

5G is the engine for these changes, and by 2025, 6.5 million base stations will be
deployed worldwide to serve 2.8 billion users. These industries will be characterized by all
sensing, connected, and intelligent features.

5G will surely steer us to achieving these goals.

Trainee Guide for IoT Engineers Page 56

Figure 6-1 Evolution of 5G standards (see the Appendix for a reference
image)

5G standards were first introduced in Release 15, which was released in 2017, covering
the wireless technical framework, physical layer coding, multi-antenna system, and uplink
and downlink network architecture. The following version, Release 16, introduced further
enhancements to 5G standards, marking the complete version of 5G.

The evolution of 5G technology can be broken into two parts. The first part is evolution
from LTE, specifically from LTE-Advanced to LTE-Advanced Pro, which in simple terms
describes evolution from 4.5G to 5G. The second part is new 5G technology, which is we
believe that 5G standards start from Release 15. These standards cover two aspects: the
first being LTE Advanced Pro evolution and EPC evolution, and the second being 5G new
radio and 5G core network.

Another advantage of 5G is that there is one unified global standard. In the 3G era, the
top three standards commonly used in China are different. China Telecom uses
CDMA2000, China Unicom uses WCDMA, and China Mobile uses TD-SCDMA. So, how
does that affect us? Well, when you buy a new mobile phone, you need to be aware of
whether the phone is SIM locked to a certain operator, otherwise other network SIM
cards may be incompatible with the phone.

SIM-locked phones are typically cheaper than unlocked phones, so you need to be aware
of this when buying a new phone.

The 4G era saw only two standards: LTE TDD and LTE FDD. And now in the 5G era we
only have one, making mobile communications even more open and convenient.

Trainee Guide for IoT Engineers Page 57

Figure 6-2 National strategies for 5G (see the Appendix for a reference
image)

Next, let us see how important 5G technologies are at the national level. As shown in
Figure 6-2, many countries are aware of the benefits that 5G can bring to their countries,
with many countries labeling 5G and AI as core strategies for achieving digitalization.

Statistics indicate that the most effective way to stimulate GDP growth is to invest more
in ICT. According to research conducted by Huawei, 20% of ICT investment will bring 1%
of GDP growth, highlighting the remarkable power of ICT investment. A large number of
countries have realized the importance of 5G and AI, and regard them as key national
development strategies. 5G construction is valuable for both operators and national
infrastructure.

During the first half of 2018 there were only five 5G networks in the world, but this
number increased to 30 in the second half of the same year, proving the rapid growth
rate of 5G networks. By the end of 2019, China had 130,000 domestic 5G base stations,
delivering 5G coverage across cities such as Beijing, Shanghai, and Guangzhou. This
shows that countries and even the world attach great importance to 5G development.

Although rolling out 5G networks is a major step, it is meaningless without compatible
products to go with it. In February 2018, Huawei released the world's first 5G commercial
chip, Balong 5G 01, and corresponding UE, Huawei 5G CPE, which has an actual downlink
rate of 2 Gbit/s. The Balong chip was then used in Huawei's maiden 5G foldable mobile
phone, the Huawei Mate X. Following this, Huawei integrated 5G modules into the
system-on-a-chip and launched Kirin 980, Kirin 990, and other chips, as well as releasing
its latest 5G mobile phone, Huawei Mate 40.

6.2 Key 5G Technologies
The key performance indicators of 5G are the capabilities required in the three 5G
general scenarios mentioned in earlier sections: 1 ms latency, 10 Gbit/s rate, and 1

Trainee Guide for IoT Engineers Page 58

million connections per square kilometer. The slicing-based network architecture is also a
5G capability, which will be detailed in a subsequent sub-section.

6.2.1 New Architecture
The key technologies of 5G can be summarized into three key innovations: new
architecture, new radio, and full spectrum. These innovations will be elaborated on in
their own sub-sections. In 5G, a single network carries services for hundreds of industries
for a wide range of applications that pose a variety of network demands. To address this
challenge for a single network, operators define combinations of requirements (including
latency and bandwidth) to shape multiple slices with different capabilities to adapt to
service requirements. Therefore, the 5G network must be flexible if slicing is required.

6.2.1.1 Network Slicing
Network Function Virtualization (NFV) technology is used in the 5G core network. NFV
uses universal hardware (such as x86) and virtualization techniques for software
processing of many functions, reducing the costs of expensive network devices. Using
software-hardware decoupling and function abstraction, network functions become
independent of dedicated hardware, and flexible resource sharing is enabled to promote
quick development and deployment of new services. In addition, automatic deployment,
auto-scaling, fault isolation, and self-healing are achievable to meet service requirements.

In other words, network functions are no longer restricted by hardware. In the past, the
purchase of hardware resources (such as memory and CPU) determined the upper limit
available for users. Usually, users purchased massive hardware resources to ensure
sufficiency. However, this led to a waste of resources as such a large quantity of
resources might not have been fully utilized in normal operation. A virtualized
architecture is not constrained by hardware. It flexibly allocates the same hardware to
different users. You can occupy resources on demand, and available resources can be
used by others.

A virtualized network can process different services based on the requirements of slices.
Software-defined networking (SDN) operates in a similar way. SDN defines a network by
software to make it more intelligent and flexible. The core technology, OpenFlow,
separates the control plane from the data plane on network devices to flexibly control
traffic on the network. SDN makes the network more intelligent as a pipe and provides a
favorable platform for innovations on the core network and applications.

We can see that, in 5G, network slicing creates multiple virtual E2E networks on one set
of universal hardware. Each virtual network offers specific functions to meet service
requirements.

Trainee Guide for IoT Engineers Page 59

6.2.1.2 NSA&SA Networking

Figure 6-3 5G networking mode (see the Appendix for a reference image)

5G networking includes non-standalone (NSA) networking and standalone (SA)
networking. As shown in Figure 6-3, the NSA network architecture consists of the 4G core
network (EPC), 4G base station (eNodeB) and 5G base station (gNodeB). In this
architecture, 4G and 5G base stations are controlled by the 4G core network. The SA
network architecture consists of the 4G base station (eNodeB), 5G base station
(gNodeB), 4G core network (EPC), and 5G core network (NGC).

The difference between the two networking modes is complex. I will use a hotel business
to describe the difference. You are the owner of a hotel (called Hotel 4), and you have a
chef (called Chef 4). As the business grows, the hotel attracts a lot of guests and you
want to expand your business. But this is costly and you have to invest wisely. You have
two solutions. Solution A is to buy another hotel (called Hotel 5) and employ another
chef (called Chef 5). This is the simplest, most direct, but most costly solution. Solution B
is to buy another hotel (Hotel 5) but not hire more chefs. Chef 4 is responsible for the
two hotels. This solution saves money but is more complex to implement, and Chef 4
may be too busy to handle two hotels.

In the example, Hotel 4 and Hotel 5 represent 4G and 5G base stations, respectively; Chef
4 and Chef 5 represent the 4G and 5G core networks, respectively; Solution A and
Solution B represent SA networking and NSA networking, respectively. Essentially, the
fundamental difference between the two networking modes is the same as that between
the two solutions in the example: the costs.

It is easy to have a pure and perfect 5G network provided that the expenses can be paid.
All of the new 5G devices are deployed in a one-stop manner and run 5G services
completely separate from the 4G network. This is how SA networking works. However,
not all operators are tycoons. To help subscribers gradually enjoy 5G services, 3GPP
proposes NSA networking. In a sense, SA and NSA networking are two service packages
offered to operators.

6.2.1.3 5G Core Network (NGC)
The 5G core network has four technical features. First, the control plane and user plane
are separated from each other. Why is this separation beneficial? The control plane is

Trainee Guide for IoT Engineers Page 60

tasked with transmitting the signaling messages and the user plane is tasked with
transmitting the service data actually used by users. With the two planes separated,
software management and upgrade are greatly simplified for operators as they can easily
locate problems on the control or user plane. The second technical feature is mobile edge
computing (MEC). MEC enables cloud computing capabilities at the edge of a cellular
network and is implemented by a cloud server running specific tasks. That is, MEC
transfers some services of the core network onto the cloud server at the edge of the
cellular network. This mechanism effectively reduces the bidirectional transmission time
on the network, minimizing latency and saving bandwidth.

The third is network function reconstruction. Cloud computing is enabled across the
entire 5G network, and the network architecture and functions of each part are
replanned. In this sense, function reconstruction is a feature of the 5G network. The
fourth and final feature is network slicing. As mentioned above, a network slice is an E2E
network that can be flexibly customized to meet specific requirements.

6.2.2 New Radio
New radio involves having knowledge of the physical layer and will not be explained in
detail here. To know more about new radio, you can continue to learn the course on 5G.
In the course on 5G IoT, you only need to know about the new radio technologies used
by 5G, including full duplex, massive MIMO, Polar coding, F-OFDM, and SCMA. In
massive MIMO, multiple antennas are used at both the transmit and receive ends. In
addition to the time and frequency domains, the space domain also uses multiplexing to
improve the throughput.

6.2.3 Full Spectrum
As mentioned above, 3G uses the 1800 MHz band and 4G uses the 2600 MHz band. 5G
directly jumps to the C-band, that is, 3.4 to 3.6 GHz. Although the band used by 4G is not
a low-frequency band (2600 MHz means 2.6 GHz), it can still reach a coverage area of
approximately two kilometers by means of signal amplification of the base station.
However, this is not the case for 5G. In addition to the C-band, the millimeter wave
(mmWave) band above 6 GHz is available in 5G. This results in weak coverage and
penetration, as well as high energy consumption on the 5G network.

For 5G, the C-band has lower frequencies compared with the mmWave band and
therefore the C-band is used for 5G base stations to provide comprehensive coverage
(that is, outdoor coverage). Other available bands in 5G are used for capacity supplement
and self-backhaul. A common 5G base station using the C-band provides a limited
coverage area and serves a limited number of users. Therefore, the user data rates are
very likely to decline to ensure successful network access for as many users as possible, if
the base station serves an excessive number of users. This is often the case in large
indoor densely-populated areas with few obstacles (such as transportation hubs and
stadiums). In this case, a micro base station operating on a band above 6 GHz is used to
expand capacity. Although high-frequency signals have poor penetration performance,
their performance in reflection is relatively favorable. Therefore, high-frequency signals
are suitable for these scenarios.

Today, fiber to the home (FTTH), for example, may still use optical fiber connections
between the operator's equipment and the home or business. Next, operators will switch

Trainee Guide for IoT Engineers Page 61

to a wireless connection to achieve wireless backhaul. An example of a wireless device
involved is CPE, as mentioned above. The CPE functions as a base station to provide
services for terminals, and also replaces optical fibers to achieve wireless self-backhaul.
This is how fixed wireless access (FWA) works, as described in a later section. Overall, 5G
deployment is a hybrid networking approach that combines high and low frequency
bands. It aggregates all frequency bands and spectrums and uses them in different
directions to provide a better 5G performance.

6.3 Three 5G Application Dimensions

6.3.1 eMBB
As covered in the preceding section, enhanced Mobile Broadband (eMBB) equips 5G with
ultra-high transmission rates, which resonates most with you. eMBB can be applied on
virtual reality (VR), augmented reality (AR), and mixed reality (MR). With VR, you use
devices (such as VR glasses) to immerse yourself in a virtual environment.

AR, also through devices (glasses), combines virtual objects with reality for interactive
experience. With MR, no glasses are required so you can project images in the air and
control them by directly touching them.

A major advantage of AR and VR devices is that they are available off the shelf, but a
drawback is that they are expensive and vary in quality. Thanks to ultra-high
transmission rates and cloud-based 5G networks, you can enjoy VR without purchasing
high-end computers. Ultra-high transmission rates ensure fast and reliable transmission
of ultra HD VR images from the cloud to your device, ensuring that you stay immersed.

6.3.2 mMTC
By leveraging Massive Machine-Type Communications (mMTC), which is a dimension of
IoT for massive connections, 5G can achieve 1 million connections per square kilometer.
Meanwhile, the standardization of NB-IoT has seen 5G branch out from merely carrying
high-speed and low-latency services as before. Though further development is not much
for massive connection technologies, the recognition of NB-IoT is an important step to
incorporating massive connections into 5G.

6.3.3 URLLC
Ultra-reliable low-latency communication (URLLC) underpins ultra-low latency services,
as previously discussed, such as autonomous driving and remote surgery. Why is low
latency important for these services? A high latency in autonomous driving, even if it is
only dozens of milliseconds, can result in a long braking distance and even catastrophes.

Trainee Guide for IoT Engineers Page 62

Figure 6-4 The effect of system latency on automobile braking distance

Here are some examples in practice. If a car drives at 80 km/h, the braking distance is
about 333 cm under a 3G network latency of 100 ms. Likewise, the braking distance is
about 167 cm under a 4G network latency of 50 ms, but with a 5G network latency of 1
ms the braking distance is dramatically cut to merely 3.33 cm.

Therefore, low latency is crucial for applications that require high security. In a remote
surgery setting, the surgeon must obtain and monitor vital data of the patient
immediately.

6.4 5G Commercial Solutions
Huawei continues to provide excellent B2C, B2B, and B2H solutions for its carriers, which
will be introduced in this section.

6.4.1 B2C Solutions
According to business insights, there are three key drivers for carrier success in the B2C
market, and these are high-quality networks, abundant contents, and flexible tariff plans.
As shown in Figure 6-5, it took nine years and six years for 3G and 4G to reach 500
million subscribers, respectively. Based on this, Huawei forecasts that it will take only
three years for 5G to achieve this same feat.

Trainee Guide for IoT Engineers Page 63

Figure 6-5 Time required for hitting 500 million B2C subscribers

In the B2C market, 5G has a considerable number of potential subscribers. Within this
field, high-quality networks are in high demand among consumers and are key to a
carrier's success. Two networking options are available: non-standalone (NSA) and
standalone (SA). As SA networking is able to deliver a superior 5G experience, carriers are
able to both appeal to and fulfill consumer demands for high-quality networks.

On top of this, 5G is well equipped to carry a large number of new services, including
new types of videos, live broadcast, and online gaming. These services open up new
experiences for consumers, satisfying the demand for abundant content.

Apart from the large quantity of subscribers and new services, the final key is flexible
tailored tariff plans. Consumers are most concerned with charging standards and tariffs,
so by offering tailored tariff plans (for example, carriers can charge live broadcast
subscribers for high uplink bandwidth and gaming subscribers for low latency and high
downlink bandwidth) to consumers, carriers can ensure consumers are getting the service
that they want.

Huawei provides its own VR and AR services. You can use VR glasses to connect to a VR
cloud platform over a high-speed 5G network. This technology enables carriers to provide
their own VR services, including VR music, VR gaming, and VR live broadcast, that are
centrally managed by a cloud platform. This solution aims to help carriers develop fully
converged video services and build core competitiveness to swing with the video era.

6.4.2 B2B Solutions
Industry research has identified an urgent need for helping carriers undertake 5G
projects, which is seen as a major profit direction in the industry. Connections act as a
potential springboard for embracing a "blue ocean".

Despite a huge 5G market capacity for B2B services, 5G B2B industry applications are still
held back by immature business models. B2B services need to be developed step by step,
starting from connections with mature business models and gradually building up to
cloud and industry applications. Therefore, carriers might begin by targeting at typical
scenarios such as private lines, private networks, and campuses, before replicating these
business models and moving onto more comprehensive scenarios of ecosystem
aggregation between networks and vertical industries.

Trainee Guide for IoT Engineers Page 64

A business solution can encompass many different scenarios. The AR 5G connection
solution in the fixed private line scenario is used for enterprise private lines to offer
secure VPN connections that are deployed quickly and economically. In addition, cameras
with built-in 5G modules facilitate camera installation and provide HD video surveillance
services for enterprises or public utilities.

Figure 6-6 5G fixed private line

Industry CPE for remote control in the wireless private line scenario provides connection
stability in complex environments. Moreover, backed by 5G's low latency, the CPE can
remotely control high-precision instruments. In the live broadcast scenario, Huawei
launched the video codec with built-in 5G modules, making 5G backpacks lighter and
battery life longer. This improves the convenience of shooting HD videos outdoors for
journalists.

Figure 6-7 5G wireless private line

6.4.3 B2H Solutions
How can carriers achieve success in B2H? As previously covered, Huawei's fixed wireless
access (FWA) B2H solution is the answer. In fiber to the home (FTTH), optical fibers wire
base stations to routers, and the routers provide you with wireless connectivity. However,
to provide wireless services on 5G networks, carriers wirelessly connect base stations to
routers at home, rather than through optical fibers.

In this case, there are three types of customers for carriers: households without network
connections, households using copper networks, and households using optical networks.
FWA is applicable to all three types of households for 5G networks.

5G CPEs help overcome this challenge. For example, mmWave CPEs cover dense urban
areas, and common CPEs cover common urban areas, meaning various types of CPEs
cater for your network requirements.

Trainee Guide for IoT Engineers Page 65

Figure 6-8 FWA solution (see the Appendix for a reference image)

Trainee Guide for IoT Engineers Page 66

7 Huawei Industrial IoT Gateways

This chapter describes the technical details of gateways for fixed network scenarios in the
industrial field. The industrial field has always been critical for the IoT sector as it is
closely related to production with many "things" involved in the process — for example,
machines and robotic arms. In addition, the environments are harsher than in other IoT
scenarios and require the use of a wide range of complex and demanding devices. As
such, diverse interfaces need to be adapted to the industrial field. With the development
of global industrial automation, industrial IoT devices that meet the preceding
requirements play an increasingly pivotal role.

7.1 Overview of Industrial IoT Gateways
IoT is widely used in industrial scenarios, which includes not only factories, but also sub-
scenarios such as electric power and transportation. For example, smart meter, smart
power distribution, and smart transportation also fall under the industrial field category.

7.1.1 Challenges Faced by IoT in the Industrial Field
 Harsh environment: Temperatures can range from extremely high to extremely low,

necessitating the need for IoT devices to be able to withstand temperatures from –
40°C to +70°C. Furthermore, these devices are expected to be dustproof, waterproof,
and resistant to electromagnetic interference. Environments such as power plants
have very strong electromagnetic interference, which affects communication
between devices and renders conventional enterprise-class routers ineffective.

 Diverse interfaces and protocols: There are a wide range of devices with different
interfaces and protocols in the industrial field. Therefore, a device which can adapt to
all these protocols and interfaces is required.

 Cyber security: Business secrets are invaluable to enterprises, making cyber security a
top priority. Although most enterprises use private networks, they are still vulnerable
to malicious attacks. Therefore, cyber and information security is a key consideration
in the industrial field.

 Complex O&M: O&M complexity is proportional to the number of terminals. With a
large number of terminals in the industrial field, maintenance is costly if experts are
needed every time an issue occurs. As such, a simple and easy-to-use system is
required to lighten the workload for O&M personnel and lower O&M expenses for
enterprises.

Trainee Guide for IoT Engineers Page 67

7.1.2 Why Industrial IoT Gateways?
An easy-to-use and powerful IoT gateway is crucial to address the preceding challenges.
What functions does an industrial IoT gateway provide? As shown in Figure 7-1, the IoT
gateway is located between the terminal layer and the network layer and serves as a
bridge between the two. It is connected to terminals on the left and connected to the
network on the right. In addition to providing upstream transmission channels for
terminals, the IoT gateway also offers edge computing capabilities, which will be
described in detail later.

Figure 7-1 Industrial IoT gateway

The industrial IoT gateway provides a protocol conversion function. There are many
protocols in the industrial field — covering all sectors — so conversion on the IoT
gateway is needed before data is transmitted.

7.2 Edge Computing
What is edge computing? To put it simply, some of the calculations that are originally
performed on the central node are performed on the edge node. Traditionally, the
platform layer processes and calculates all data. But now, the IoT gateway can calculate
some of the data that is not important and promptly provide the calculated data to the
terminals. The result is lower latency, greater user privacy, and lowered costs. This is
because for the central node, not all the data collected is useful, so some unnecessary
data can be processed by the edge node. In this way, the edge node relieves some of the
pressure at the central node.

Management & Application

Management app

Network

Internet

Terminal

... Industrial IoT
gateway

3G/LTE/xDSL/
Ethernet

...

ZigBee/RF
Ethernet/

PLC/RS485
...

SDK
Third-party app

Network
management

Terminal
management

Trainee Guide for IoT Engineers Page 68

Figure 7-2 Implementation of edge computing

In the past, data is processed as shown in Figure 7-2 where data is generated on devices
and uploaded to gateways. However, the gateways did not have any computing
capabilities and could only function as a transmission device to upload data to the cloud
for processing. Now, as gateways themselves have computing capabilities, they can
locally process some data with low requirements, instead of transmitting it to the central
node. After the data is processed, the gateway still needs to notify the central node that
the data has been processed.

Edge computing is an open platform that integrates connection, computing, storage,
control, and application functions. Compared to the architecture of IoT, the architecture
of edge computing can be divided into four domains: device, network, data, and
application. Although edge computing is located between the sensing layer and network
layer, the edge computing architecture can be divided into four layers to provide
capabilities similar to the four-layer architecture of IoT.

Data

Device Gateway Cloud

Traditionally, data must be sent to a server for processing,
resulting in a long latency, which cannot meet requirements

of IoT services.

Device Gateway Cloud

Data

Currently, the local gateway provides containers
to process data locally,

minimizing the latency and improving reliability.

Trainee Guide for IoT Engineers Page 69

Figure 7-3 Edge computing architecture

The two layers between the device and gateway in the IoT architecture are further
divided into four layers. In the hierarchical edge computing architecture, the device
domain is equivalent to the sensing layer; the network domain refers to the network
between devices and gateways; the data domain refers to gateways, which process data
in a similar way to an IoT platform; and the application domain refers to the diverse
applications in edge computing.

7.3 Network Topology
A network topology refers to the layout of computers and devices on a communication
network, representing the physical or logical arrangement of network elements (NEs). If
two networks have the same connection model, their network topologies are of the same
type, though the physical connections inside the two networks and the distances between
nodes may be different. This section describes common network topologies as well as
mesh — a networking technology widely used in the IoT field.

Cloud
application

Application domain

Edge industry application Edge service operation

Data domain

Data analysis and presentation

Data aggregation and interoperability

Data
security

Network domain

Massive connections and automatic O&M Cyber
security

Device domain

Operating system
Device
security

Real-time connection

Trainee Guide for IoT Engineers Page 70

7.3.1 Star Topology
The star topology is a topology in which all nodes are connected through a central
network device such as a hub or a switch.

Figure 7-4 Star topology

Basic features:

 Easy implementation with heavy installation and maintenance workloads and high
costs: Typically, twisted pairs or coaxial cables are used for transmission. Each site
needs to be directly connected to a central network device, which requires a large
number of cables, resulting in heavy workloads for installation and maintenance.

 Easy node expansion and movement: To add a node, you only need to connect the
node to the hub or switch using a cable. To move a node, you only need to move the
node to the new position as needed.

 Easy fault diagnosis and isolation: If one node is faulty, connections of the other
nodes are not affected, and the faulty node can be removed as needed.

 Potential bottleneck on the central node and low distributed processing capability of
each site: The load of the central node is heavy, which may cause a bottleneck. When
the central node fails, the entire network is affected.

Advantages:

 Simple network structure streamlines management, maintenance, and
commissioning.

 Easy control enables the quick addition or removal of sites.

 Centralized management simplifies service provisioning and network reconfiguration.

 Direct connection of each node to the central node facilitates fault diagnosis and
isolation.

Disadvantages:

 Low line utilization: A line is used only by the central node and the node on the line.

Trainee Guide for IoT Engineers Page 71

 Heavy workload of the central node: When the central node is faulty, the entire
network fails, imposing stringent requirements on the reliability and redundancy of
the central node.

 High installation and maintenance costs: A large number of cables are needed.

7.3.2 Ring Topology

Figure 7-5 Ring topology

The ring topology is widely used on LANs. On a ring network, packets of data travel from
one device to the next until they reach the destination. This structure eliminates the
dependency on a central node for communication between end users.

The ring topology has the following characteristics:

 Information flows towards a fixed direction on a network with only one path
between two nodes, simplifying path selection.

 The control software is simple and easy to use.

 Information is transmitted over the nodes on the ring network sequentially. If there
are a large number of intermediate nodes, the information transmission rate will be
lowered, increasing the network response time.

 The ring network is closed, making expansions difficult.

 A faulty node will cause the entire network to break down, resulting in low reliability.

 Faults on branch nodes are hard to locate.

7.3.3 Bus Topology
Bus topology (or bus network) is commonly referred to as a "linear bus" because all the
nodes are physically connected in a straight line.

Trainee Guide for IoT Engineers Page 72

Figure 7-6 Bus topology

The bus topology has the following characteristics:

 Simple structure facilitates expansion. To add a node, only one branch interface
needs to be added on the bus to connect to the branch node. When the maximum
bus load is reached, other buses can be expanded.

 Only a small number of cables are needed, simplifying installation.

 Simple and reliable devices are used.

 Faults on branch nodes are hard to locate.

Advantages:

 Easily connects to a computer or peripheral linear bus.

 Requires shorter cables than the star topology.

 Suitable for small networks.

Disadvantages:

 The entire network will shut down if there is a break in the main cable.

 Terminators are required at both ends of the main cable.

 Difficult to identify the root cause of network shutdowns.

 The transmission speed slows when a large number of devices are added to the
network.

7.3.4 Mesh Topology
A wireless mesh network (or multi-hop network) is a new wireless network technology
that is radically different from a traditional wireless network. It does not rely on a preset
infrastructure — allowing for temporary networking and rapid deployment — and is
resilient to damage, even without a control center.

Trainee Guide for IoT Engineers Page 73

Figure 7-7 Mesh topology

A wireless mesh network uses a multipoint-to-multipoint network topology called mesh.
In this topology, network nodes are connected in a wireless multi-hop manner through
adjacent network nodes.

Mesh technology can relay signals, extend radio signal coverage, and support network
self-organization, self-recovery, and traffic self-balancing. Therefore, mesh technology is
recommended for RF networks.

Mesh technology can significantly increase the network bandwidth:

Due to the physical characteristics of wireless communications, a shorter transmission
distance of a radio signal makes it easier to achieve a higher bandwidth. This is because,
the longer the wireless transmission distance, the higher the likelihood of data loss from
a number of factors such as interference. If multiple short hops are used to transmit data,
the bandwidth of each hop increases, improving the total bandwidth.

On a mesh network, each node sends and receives information, and functions as a router
to forward information to neighboring nodes. With a growing number of interconnected
nodes and more paths for data transmission, the total bandwidth increases.

WLAN

WLAN

WLAN

WLANWLAN

WLAN

Optical fiber
Optical fiber

Optical fiber

Trainee Guide for IoT Engineers Page 74

8 Home IoT Gateways

This chapter builds on the previous chapter and describes the application of home IoT
gateways in home scenarios. Although many smart home appliances exist on the market,
a smart device is needed to control all these devices, and this is known as a smart home
gateway. A smart home gateway is the heart of a smart home and is also the unified
egress of smart devices, which highlights its importance in the home.

8.1 Home IoT Gateway Overview

8.1.1 Home Network Development
Before smart devices exploded onto the scene, a simple home network set-up consisted
of a desktop computer connected to the Internet through a dial-up modem, which was a
simpler, point-to-point structure. Now, the popularization of FTTH has led to optical
modems being widely used in homes, with which wireless Internet has become a
mainstay. Not only has accessing the Internet become easier, but also the devices we use
to access the Internet has become smaller and more diverse, such as computers,
smartphones, tablets, and set-top boxes. A typical home network nowadays is more
representative of the star structure described in the last chapter.

Trainee Guide for IoT Engineers Page 75

Figure 8-1 Basic broadband service and diverse home service (see the
Appendix for a reference image)

In the future, a smart home gateway, or ONT (as shown in Figure 8-2) will act as the
home terminal, whereby almost all home devices will connect to the Internet through the
smart ONT, creating a complete smart home system. This in turn will form a mesh
network. It lacks a control center, so all devices can be intelligently connected to other
devices to exchange data. All future networks are expected to evolve towards this kind of
structure.

Figure 8-2 Smart home service (see the Appendix for a reference image)

The smartphone revolution in 2006 not only boosted the development of wireless
communications technologies, but also kick started the development of home networks.
As phones became smarter and tablets were introduced to consumers, a home terminal
was needed to connect them all to the Internet. On top of this, fixed broadband
gradually evolved to fiber access, meaning smart ONTs not only provide high-speed
Internet, but also lay the foundation for the development of other home services.

8.1.2 Positioning of Smart Home Gateways
The smart home network will continue to run over a broadband connection, but one
thing that will change is how IoT devices within the home connect to the Internet.
Although most devices will connect to the home network through Wi-Fi, certain devices,
such as smart fridges and door locks, will connect through ZigBee or Z-Wave.

For an environment that is home to various types of connections, a Wi-Fi router is simply
no longer enough. Rather, a smart gateway that can connect devices at different
standards and implement unified management and control is therefore needed.

Trainee Guide for IoT Engineers Page 76

8.1.3 Key Services of Smart Home Gateways
A smart home gateway enables smart acceleration, giving home users who watch and
download videos, or play online games the power to optimize speeds for these services.
This can be achieved by installing a smart acceleration plug-in that will accelerate video
streaming and download speeds, as well as reduce latency for online gaming.

Another important service is seamless Wi-Fi coverage throughout the whole home.
Although some home IoT devices will use different standards and networks, 80% of them
will still be connected through Wi-Fi, and this simply highlights the reliance on Wi-Fi in
the home.

Figure 8-3 Three Wi-Fi extension modes

In many existing home networks, many rooms require a router to be installed inside each
room to achieve strong Wi-Fi coverage. Even then, the coverage distance is limited and
unlikely to be picked up by a room on a different floor. To overcome this problem,
Huawei proposes these 3 solutions, as shown in Figure 8-3.

The first and simplest solution is to install the primary router in a large room, such as the
living room, to ensure strong signal coverage. Another solution is to install PLC modems
in the bedrooms to extend Wi-Fi coverage through the power lines, while a third solution
is to install a wireless repeater on the staircase.

The smart ONT also offers intelligent interconnection. Future homes are shifting more
towards smart automation in an effort to cut energy consumption and bring greater
convenience to our lives. A smart ONT is needed to connect all of these appliances and
devices, regardless of their transmission standards, and provide a platform to control
them in one place. On top of this, we also need a cloud platform that will allow us to
control the devices through a smartphone, even when we outside the home.

And last but not least is intelligent O&M. Through the cloud platform, we can control,
run, and maintain home devices at a click.

The smart ONT (the core) provides two open capabilities - open home and open elastic
pipe - that comprise the advanced structure of this technology, helping make smart
homes a reality. Open home capabilities include smart Wi-Fi coverage and ZigBee & Z-
Wave, enabling ubiquitous connectivity, while open pipe capabilities that extend flexible
pipes from operators to homes, integrating applications and building a platform.

Trainee Guide for IoT Engineers Page 77

8.2 Huawei Smart Home Solution

Figure 8-4 Smart home solution (see the Appendix for a reference image)

This section describes Huawei's smart home solution, which can be summarized as
openness. This solution provides a collaborative platform for all partners across various
industries to build a new industry environment.

In terms of hardware, Huawei cooperates with smart device vendors and chip module
vendors to research home devices, and ensures home devices are connected to smart
gateways. Regarding the IoT platform, Huawei opens up capabilities and works with
cloud service providers to build an intelligent cloud platform. As for service applications,
Huawei works with app developers and service providers to build a joint app framework
for smart homes. At the upper layer, Huawei offers global operators a smart home
solution that delivers network assurance for cloud, pipes, and devices.

Figure 8-4 illustrates the Huawei smart home solution architecture. Using the open mode
of the smart gateway is similar to using a PC. A PC usually has standard physical PCI
slots. To begin with, install an operating system and hardware to the PC, and install drive
to the PC to control the hardware. Then install applications if required.

The operating system of the PC acts as the brain, interacting with different software,
hardware, and applications. Huawei uses this same structure to develop the smart home
system, where physical PCI slots are replaced with wireless protocols such as ZigBee and
Wi-Fi. The smart gateway acts as the brain, interacting with different software, hardware,
and applications.

A smart gateway has three types of plug-ins (drivers, agents, and applications).

 A driver is a program that must be installed to enable communication between
installed hardware and the operating system. Huawei uses OSGi (open-source
specifications defined by the ITU) instead of drivers, and this functions as a Java
virtual machine. By simply writing a driver specifically for a device in Java to the
OSGi, a third party can operate their own device, achieving all-round device
integration.

Trainee Guide for IoT Engineers Page 78

 Agents are another type of plug-in that drive the cloud. An agent offers an
environment for operators and third parties to share capabilities (for example, facial
recognition) that can be used by partners to develop applications.

 The final type of plug-ins is applications.

Operators can set up a store for gateway apps, providing a one-stop place for consumers
to download the required drivers, agents, and apps to get services operational. With the
necessary drivers and devices, agents can invoke cloud-based capabilities, while apps
implement home services.

In short, Huawei OpenLife solution imports and integrates hardware vendors and
service/application content for operators.

8.3 HiLink Platform

Figure 8-5 Huawei HiLink technical solution

Huawei HiLink platform provides developers with a complete set of development
solutions, from protocols used by smart hardware, device control pages on the smart
home app, all-round device control on the platform, and hardware data sharing on the
cloud. The HiLink platform supports the development of these solutions in just one place.

In a nutshell, the platform is open, shared, easy-to-use, secure, reliable, and affordable.
The goal of the Huawei smart home solution is to build an open platform that nurtures
collaboration among all developers, and to facilitate the rapid development of smart
hardware. The ultimate goal is to get home services on the market as fast as possible,
and quickly build an open, smart home ecosystem.

Developers use HiLink Access to connect such devices due to its cross-compatibility with
partners' products. For example, in the home appliance field, China is home to many
major companies, such as Gree and Midea. The smart home products of these
manufacturers have their own platforms, but for consumers who buy devices belonging

Trainee Guide for IoT Engineers Page 79

to different brands, it is difficult to use one app or platform to control all of these
devices. Huawei HiLink Access offers a solution to this issue.

Figure 8-6 Huawei HiLink Access (ecosystem connection)

As shown in Figure 8-6, three different connection methods are available for the HiLink
ecosystem. For electrical appliances that lack communication capabilities, HiLink modules
can be embedded into the appliances to connect to the platform. Similarly, vendors who
have their own platforms may have their own modules. So, if they want to connect to the
Huawei ecosystem, they can burn HiLink SDK to their devices to connect to the platform.
If a consumer purchases products from different companies but wants to connect to the
Huawei ecosystem, they can use HiLink routers to control smart devices and connect
them to the HiLink platform.

The Huawei HiLink platform provides two access modes. One is to connect through
hardware interconnection, so that devices can connect to the Huawei platform through
the HiLink SDK or Huawei LiteOS-based hardware modules. The other option is to
connect through cloud interconnection. We can log in to the HiLink cloud using a
personal account, and connect devices to the HiLink cloud, delivering cloud capabilities to
Huawei compatible devices.

To connect a device to the Huawei HiLink platform, the device must have the Huawei
HiLink Device SDK integrated. The Huawei HiLink Device SDK applies to devices that run
a supported operating system as well as devices that do not have microprocessors but
are directly developed in modules.

The HiLink platform is an open platform, meaning that Huawei provides developers and
consumers with multiple access modes. Developers can leverage these modes for
application and service development, and consumers can access the platform through
multiple methods. This platform offers consumers an environment to connect and control
products belonging to different brands on just one platform.

Trainee Guide for IoT Engineers Page 80

9 IoT Platform

9.1 Overview of Ecosystem and Platform
There are many interpretations of the concepts of "platform" and "ecosystem" in the
market. Nevertheless, the industry has reached consensus that an ecosystem is based on
an open platform. The following describes the platform model and ecosystem from the
perspective of industry value to illustrate the importance of a platform-based ecosystem.

9.1.1 Platform Model
The platform model refers to an open, collaborative system built by an enterprise with
the enterprise itself as the core. An enterprise that builds a platform is the platform
owner and is responsible for the overall platform support and operations. Internal and
external roles of the enterprise, such as capital, employees, partners, and users, can
collaborate with the enterprise in real time after obtaining certain permissions.

Unlike traditional business cooperation, the platform model enables open, real-time
collaboration by leveraging web 2.0 or mobile Internet. In the IoT platform model,
platform participants can collaborate with each other.

9.1.2 Ecosystem
An ecosystem is a type of business collaboration network developed on the platform
model. It is spontaneous and self-consistent, and has an internal value chain. In an
ecosystem, enterprises use modern information technologies to implement network-like
loose coupling. Similar to the platform model, enterprises in the ecosystem can
collaborate with each other. An ecosystem can reduce transaction costs and share
business opportunities. It also promotes the transfer of the internal value chain between
its members and enables them to contact as many potential partners as possible.

Transaction costs are reduced and more business opportunities emerge as the number of
internal transactions and data flows in the ecosystem increase. To sum up, the value that
an ecosystem brings to every participant is often determined by the total scale of its
system.

The platform model is centered on enterprise-dominated operations, and the ecosystem
is an overall view of network-like collaboration based on the platform model. A platform-
based ecosystem is the product of the platform model as the platform model develops. It
is also the overall view of the value chain formed by multiple platforms that serve
different objects.

The IoT is used in diverse industries. How to integrate the value chain, attract developers,
enrich applications, and expand user groups is the key to realizing the value of the IoT.

Trainee Guide for IoT Engineers Page 81

9.2 Origin of the IoT Platform
The world is witnessing a new technological revolution and industry transformation.
Information technologies represented by the IoT, big data, and artificial intelligence (AI)
are accelerating their integration with the real economy. They are being transformed into
productivity and upgraded into infrastructure and key elements that reshape production
organization and growth models. During China's 13th Five-Year Plan period, the IoT will
enter a new phase of cross-border integration, integrated innovation, and scale
development. A plethora of development opportunities will emerge. Since 2017, the IoT
industry around the world has been engaged in a new round of development, driven by
new network and platform technologies. More IoT technology innovations will be
forthcoming. We need to study the development trends and direction of the IoT from the
perspectives of technology and industry.

9.2.1 IoT Is Ushering In Industry Innovation and Transformation
From 2005 onwards, the global IoT went through a market cultivation phase (phase 1.0)
focused on "concept exploration, government-led, and application demonstration". With
more technological breakthroughs and requirements, significant changes have taken
place in the development conditions and technical composition of the IoT. By now, the
IoT has entered its industrial outbreak phase (phase 2.0), which is known as "cross-
border integration, integrated innovation, scale application, and ecological acceleration".
There is an obvious trend of systematic and integrated innovation in the convergence of
IoT, big data, AI, and other new information technologies. Core technology systems, such
as hardware, software, and services, are being reconstructed and iterated rapidly. Edge
computing and fog computing support self-sensing, self-decision-making, self-
optimization, and self-execution. Blockchain supports multi-party storage and exchange
of data. Virtual reality (VR) and augmented reality (AR) provide three-dimensional,
intuitive display. These new technologies are integrated with the IoT to provide
innovative means of IoT sensing, data processing, and data presentation. They also serve
industry-specific applications such as industrial autonomous control and maintenance,
intelligent transportation, and smart building. In this new development phase, the IoT
features "Internet of everything, ubiquitous intelligence, platform ecosystems, and data
operation". A new turning point is arriving.

Currently, 60% of enterprises are using or about to deploy IoT services, 24% of IT budgets
are being used for IoT investment, and 63% of enterprises have gained significant return
on IoT investment. See Figure 9-1.

Trainee Guide for IoT Engineers Page 82

Figure 9-1 IoT is ushering in industry innovation and transformation (see the
Appendix for a reference image)

9.2.2 Major Challenges Facing the IoT Industry
The IoT has witnessed scale development in recent years, and countries around the world
have invested heavily in IoT research and development. However, there are still many
problems to solve in terms of technology, management, costs, policies, and security.

Traditional Internet standards are not suitable for the IoT. Data at the IoT sensing layer
has multiple sources and is heterogeneous. Different devices have different interfaces and
technical standards. The network layer and application layer use different protocols and
architectures. Establishing a unified IoT architecture and unified technical standards is a
challenge facing the IoT. Figure 9-2 shows major challenges in the IoT industry.

Figure 9-2 Major challenges facing the IoT industry

Trainee Guide for IoT Engineers Page 83

9.2.3 Requirements for the IoT Platform
The IoT itself is a complex network system, and its wide application in different industries
makes intersections inevitable. If such a network system does not have a dedicated,
comprehensive platform to manage information by category, a large amount of
redundant data and repeated work will occur. Applications in each industry are
independent of each other, resulting in high costs and low efficiency. All these hinder the
development of the IoT. The IoT is in urgent need of a unified management platform that
can integrate resources of different industries to form a complete industry chain.

Countries around the world are proactively supporting the IoT, but there are few IoT
projects that can secure investment and be used on a large scale. For example, RFID tags
and readers are far more expensive than enterprises expected; sensing networks are
multi-hop self-organizing networks that are vulnerable to environmental or human
threats. Costly network maintenance is required to ensure stable network quality and
reliable, secure, and real-time data transmission. Unacceptable high costs would make
IoT development unfeasible.

Today, the Internet still has security vulnerabilities. As an emerging product, the IoT has
even more prominent security issues, due to its complex architecture and lack of unified
standards. Sensing networks are vulnerable to their environments. Sensors are placed in
natural environments, including harsh ones. Sensing networks must support self-healing
to ensure long-term network integrity. Sensing networks are also vulnerable to human
impact.

RFID is another key technology. RFID enables real-time monitoring by attaching a tag to
an item. This exposes private data. In addition, collaboration between enterprises and
between countries is common nowadays. There could therefore be severe consequences if
a network is attacked. It is crucial to strike a balance between informatization and
security during the use of the IoT.

To develop IoT services, we require a secure, reliable platform that supports device access
decoupling and capability openness. Figure 9-3 shows the requirements for the IoT
platform.

Figure 9-3 Requirements for the IoT platform

Trainee Guide for IoT Engineers Page 84

9.3 Introduction to the HUAWEI CLOUD IoT Platform

9.3.1 IoT Platform Overview
The rapid development of the IoT requires a secure, reliable platform that supports
device access decoupling and capability openness. The HUAWEI CLOUD IoT platform is
such a platform. It is access-agnostic, secure, reliable, open, and scalable. It helps
enterprises and industry users quickly integrate applications and build end-to-end IoT
solutions.

The IoT platform architecture consists of four layers: device layer, access layer, platform
layer, and application layer. The platform layer can be further divided into the device
connectivity layer and service enablement layer. Figure 9-4 shows the functional
architecture of the HUAWEI CLOUD IoT platform.

Figure 9-4 Functional architecture of the HUAWEI CLOUD IoT platform

The device layer provides IoT Agents that are adaptable to OSs and smart devices
provided by different manufacturers. It is pre-integrated with valuable industry-specific
applications. Table 9-1 describes these devices.

Table 9-1 Devices at the device layer

Peripheral/Device Description

Smart device
Smart devices, such as smartphones, tablets, and computers, are
used to remotely control intelligent hardware.

Intelligent
hardware

Intelligent hardware is connected to the Internet using various
types of sensors, such as RFID devices, photoacoustic or
electromagnetic sensors, and laser scanners, to perform data
collection, convergence, and processing.

Sensor A sensor is a detection apparatus that responds to a stimulus and

Trainee Guide for IoT Engineers Page 85

Peripheral/Device Description

generates a signal that can be measured or interpreted, to meet
requirements for data transmission, processing, storage,
recording, and control.

Industry app
Industry apps can be installed on devices, such as mobile phones,
computers, and tablets, to control intelligent hardware.

IoT Agent

IoT Agents use various communications protocols to provide
network access for devices. The Agents isolate applications from
OSs and hardware.

 The Agents provide the bottom layer with SDKs, which can
be adapted to different OSs and hardware.

 The Agents provide a variety of APIs independent of
underlying resources.

The access layer supports both wireless and wired access. A large number of devices can
be connected. Table 9-2 describes the access layer.

Table 9-2 Access scenarios supported by the access layer

Access Scenario Description

MBB (P-
GW/GGSN)

Wireless wide area network (WWAN)

FBB (BRAS) FBB and fiber to the x (FTTx)

IoT (enterprise AR)

Wireless local area network (WLAN)

Wireless personal area network (WPAN)

Fixed, including FTTx, hybrid fiber coaxial (HFC), and electrical
power cable

The device connectivity layer provides unified device access, asset and device
management, and SIM card connectivity management. Table 9-3 describes the device
connectivity layer.

Table 9-3 Functions provided by the device connectivity layer

Function Description

Device
management

Carriers can manage all sensor nodes at the bottom layer, obtain
information about each node, and implement remote control.

Device
communications

management

Device communications management provides the following
functions:

 Device login

Trainee Guide for IoT Engineers Page 86

Function Description

 Data communications

 Device-initiated subscription

 User-initiated subscription

Transmission
protocol

adaptation
The IoT platform supports HTTP, MQTT, and CoAP.

Lightweight
authentication

The IoT platform simplifies the authentication process for devices
and applications.

The service enablement layer provides functions such as open API gateways, data
management, and a rule engine. Table 9-4 describes the service enabler layer.

Table 9-4 Functions provided by the service enablement layer

Function Function

Open applications
and APIs

Functioning as an independent module, the open API gateway
provides API searching, help, and lifecycle management.

Data
management and

openness

Native device data is converted according to industry-defined data
models that can be identified by the IoT platform. Based on the
data, carriers can use rule engine and service orchestration
modules to define or improve their business practices.

Rule engine
The rule engine enables end users to use predefined rules to
customize rules on a user-friendly UI.

The IoT platform supports multiple types of open APIs and pre-integration of multiple
industry-specific applications, including smart home, IoV, smart metering, and third-party
applications. Table 9-5 describes the application scenarios.

Table 9-5 Applications pre-integrated at the application layer

Application Function

Smart home
Home appliances and devices are remotely monitored and
controlled for more secure, convenient living.

IoV
Traffic information, remote vehicle diagnosis, and E-Call/B-Call
services are provided.

Smart metering

NB-IoT communications modules are embedded in water and
electric meters. These meters can be upgraded based on existing
base stations to provide smart metering, which features low
power consumption, wide coverage, and low-cost deployment.

Trainee Guide for IoT Engineers Page 87

Application Function

Third-party
application

Third-party applications are developed by organizations or
individuals rather than software editors. Typical third-party
applications include smart grid, smart building, and smart
business.

The IoT platform connects and manages a large number of devices. It works with other
HUAWEI CLOUD services to quickly build IoT applications. A complete IoT solution
consists of the IoT platform, devices, and applications. Figure 9-5 shows the architecture
of the HUAWEI CLOUD IoT platform.

Figure 9-5 HUAWEI CLOUD IoT platform

The IoT platform is located between applications and devices. It hides differences
between device interfaces to enable quick device access. It provides robust capabilities to
help developers quickly construct diverse IoT applications.

Devices can access the platform via FBB, 2G/3G/4G/5G, NB-IoT, and Wi-Fi networks. They
can report service data to the platform using MQTT or LwM2M over CoAP. Devices can
also receive commands from the platform.

Applications call platform APIs for device management, data reporting, command
delivery, and other service scenarios.

Table 9-6 describes the services provided by HUAWEI CLOUD IoT.

Trainee Guide for IoT Engineers Page 88

Table 9-6 HUAWEI CLOUD IoT services

Service Category Description

IoT Device
Access

Device
connectivity

Devices can connect to the IoT platform using
multiple protocols in multiple access modes.

Device
management

The IoT platform can manage devices and device
data.

Data
forwarding

The IoT platform can forward data to other HUAWEI
CLOUD services.

Application
integration

Applications can access the IoT platform and call APIs
provided by the platform.

IoT Studio Developers can construct IoT applications without
coding.

IoT Analytics The IoT platform can analyze device data.

Other related
services

IoT Edge
The IoT platform can work with other IoT services to
build a solution. Global SIM

Link

9.3.2 IoT Device Access
9.3.2.1 Overview

IoT Device Access (IoTDA) is a basic service of the HUAWEI CLOUD IoT platform. IoTDA
provides functions such as device fleet access, bidirectional communications between
devices and the cloud, batch device management, remote control and monitoring, Over-
the-Air (OTA) upgrades, and device linkage rules. It can flexibly transfer device data to
other HUAWEI CLOUD services. Using IoTDA, you can quickly connect devices to the
platform and integrate your applications. As shown in Figure 9-6, the IoT system based
on the HUAWEI CLOUD IoT platform consists of the following parts: devices, device
access, message communications, device management, data forwarding, IoT applications,
and interworking with other HUAWEI CLOUD services.

Trainee Guide for IoT Engineers Page 89

Figure 9-6 IoT system based on the HUAWEI CLOUD IoT platform (see the
Appendix for a reference image)

9.3.2.2 Typical IoT Protocols
HTTP

The HyperText Transfer Protocol (HTTP) is an application-layer protocol used for
communications between web servers and browsers. It makes the browser more efficient
and reduces the amount of data to transmit. It ensures that a computer correctly and
quickly transmits hypertext documents and determines the priority of the document
contents to transmit and display, for example, to display text prior to images.

HTTP runs at the application layer. It is a request-response protocol in the standard
client-server model.

HTTP is stateless. There is no mapping between two consecutive requests. An HTTP server
does not know whether two requests came from the same client. To solve this problem,
the cookie mechanism is introduced.

HTTP is a synchronization protocol, which means that the client needs to wait for a
response from the server. Web browsers can meet this requirement, at the expense of
scalability. In the IoT field, synchronous communication is difficult to implement because
of device fleets, unreliable networks, and high latency. An asynchronous protocol is more
suitable for IoT applications. Sensors send data, where the network determines the best
route and time to deliver the data to the target device and service.

HTTP is a heavyweight protocol with many headers and rules and is not suitable for
restricted networks.

Figure 9-7 shows the three-way handshake process.

Trainee Guide for IoT Engineers Page 90

Figure 9-7 HTTP three-way handshake process

Note: SYN stands for synchronization, Seq stands for sequence, ACK stands for
acknowledgment, and ack stands for acknowledgment sequence.

First handshake:

A client sends a connection request packet to set up a connection with the server. As
stipulated in TCP, a packet segment with SYN=1 cannot carry data and needs to consume
a sequence number. The client generates a random initial sequence number (X), and
includes both SNY=1 and Seq=X in the packet. The client enters the SYN-SENT state.

Second handshake:

The server sends an ACK packet to accept the connection request. The server generates a
random initial sequence number (Y), and includes SYN=1, ACK=1, ack=X+1, and Seq=Y in
the packet. The server enters the SYN_RCVD state.

Third handshake:

The client sends an ACK packet to the server to acknowledge the receipt of the ACK
packet from the server. In this ACK packet, ACK is 1 and ack is Y+1. The TCP connection is
established, and the client enters the ESTABLISHED state.

Necessity of the three-way handshake:

After the client sends the first connection request packet, the server may fail to receive
the packet on time due to network congestion. When it finally receives the packet, which
is invalid, the server still sends an ACK packet to the client and waits for subsequent
requests from the client. If a two-way handshake is used, the client ignores the ACK
packet sent by the server, but the server continues to wait for requests from the client.
This wastes resources. When a three-way handshake is used, the server disconnects from
the client when it cannot receive the ACK packet from the client.

MQTT

Trainee Guide for IoT Engineers Page 91

Message Queuing Telemetry Transport (MQTT) is an instant messaging protocol
developed by IBM. MQTT uses the publish-subscribe pattern. The client subscribes to
desired information from the server, and the server pushes the information to the client.

Figure 9-8 MQTT interaction process

MQTT has the following characteristics:

 MQTT is simple and lightweight. (A message can contain only two bytes. MQTT has
low requirements for hardware configuration and is suitable for devices with limited
hardware resources such as CPU. This protocol helps reduce device costs and
promote industry development.)

 MQTT supports reliable message transmission based on TCP/IP.

 MQTT uses persistent connections and a keep-alive mechanism to reduce the cost of
link re-establishment.

 MQTT supports real-time message notifications and rich push content.

 The keep-alive mechanism prevents a device from entering sleep mode, which
consumes much power.

 MQTT meets requirements of wireless sensor networks and IoT. It is widely used in
the smart home solution.

MQTT client

 Both publishers and subscribers are MQTT clients responsible for publishing or
subscribing to messages, respectively.

 An MQTT client can be any device (from a micro controller up to a full-fledged
server) that runs an MQTT library and connects to an MQTT broker over a network.

MQTT broker

 The MQTT broker is the core of any publish-subscribe protocol and can concurrently
process millions of connected MQTT clients.

 The MQTT broker is responsible for receiving all messages and sending the messages
to all subscribed clients.

Trainee Guide for IoT Engineers Page 92

 One responsibility of the broker is to keep the session data of all clients that have
persistent sessions, including subscribed and missed messages.

 Another responsibility is client authentication and authorization.

CoAP

Constrained Application Protocol (CoAP) is designed for resource-limited devices (such as
sensor nodes) and networks (such as NB-IoT and LoRa). CoAP is based on HTTP. CoAP
uses a request/response model, in which the client initiates a request and the server
responds to the request. CoAP optimizes the packet length and offers reliable
communications to address the issues that may occur on HTTP in restricted conditions.

Figure 9-9 CoAP interaction process

CoAP has the following characteristics:

 The header is compressed, the packet format is simple, and a message can be short
as 4 bytes.

 CoAP uses UDP at the transport layer to reduce network overhead and support
multicast.

 To make up for the unreliability of UDP transmission, CoAP provides message
retransmission.

 Persistent connections are not supported, and no heartbeat messages are sent. When
no service is running, a CoAP device does not need to send messages to external
systems.

 The device may need to be woken up before processing services, resulting in poor
real-time performance.

Unlike MQTT, CoAP does not need to maintain persistent connections or send heartbeat
messages continuously. It is more suitable for devices that use the sleep/wakeup
mechanism in the IoT scenario. The device can stay in the sleep mode for a long time,
saving power. For example, one battery can be used for 10 years or longer. CoAP is
mainly used in solutions such as smart water meters, smart electricity meters, smart
agriculture, and smart parking.

Trainee Guide for IoT Engineers Page 93

9.3.3 Device Management
9.3.3.1 Device Registration and Access Authentication

Device registration and access authentication are required to ensure that devices
connected to the IoT platform are secure and reliable.

Device registration: Users register device details on the console or call the Registering
Devices API to register device information. These devices can then connect to the IoT
platform for communications.

Device access authentication: The IoT platform authenticates a device when it attempts
to connect to the platform. The platform authenticates integrity and security of device
data, device access data, and messages exchanged between the device and platform.

Figure 9-10 Device registration and access authentication

9.3.3.2 Command Delivery
The product model of a device defines commands that can be delivered by the IoT
platform to the device. The platform modifies the service properties of the device when
delivering commands.

The IoT platform has two ways to deliver commands, as described in Table 9-7.

Trainee Guide for IoT Engineers Page 94

Table 9-7 Command delivery

Mechanism Definition
Application

Scenario
NB-IoT
Devices

Devices
Integrated
with the
AgentLite

SDK or
Native
MQTT

Devices

Immediate
delivery

The IoT platform
delivers commands
to a device
regardless of
whether the device is
online. If the device
is offline or the
device does not
receive the
command, the
delivery fails.
Commands can be
delivered to devices
bound to the current
applications and
other authorized
applications.

Commands
must be
executed in real
time, for
example,
turning on a
street lamp or
turning off a gas
meter switch.
Applications
should
determine the
appropriate time
to deliver a
command.

Applicable. The
working mode
of the device
must be set to
DRX or eDRX,
and an Internet
Protocol
Security (IPsec)
tunnel must be
established
between the
IoT platform
and the EPC
network.

Applicable

Delayed
delivery

The IoT platform
caches a command
and delivers it to a
device when the
device goes online or
reports data. If a
device has multiple
cached commands,
the IoT platform
delivers the
commands in
sequence.
Commands can be
delivered to devices
bound to the current
application and
other authorized
applications.

Delayed delivery
applies to
commands that
do not need to
be executed
immediately, for
example,
configuring
water meter
parameters.

Applicable. The
working mode
of the device
must be set to
PSM.

Not
applicable

Trainee Guide for IoT Engineers Page 95

In immediate delivery mode, all commands are directly delivered to devices. In delayed
delivery mode, commands are delivered to devices in serial mode after the devices go
online or report data to the IoT platform. Cached commands are delivered to devices one
by one based on the time they are cached. Figure 9-11 shows the status transition of a
device command over the entire lifecycle.

Figure 9-11 Device command status transition

Table 9-8 describes the command status.

Table 9-8 Device command status description

Status Description

PENDING

For an NB-IoT device in delayed delivery mode, the platform caches a
command if the device has not reported data. The command status is
PENDING.

This status does not exist for an NB-IoT device in immediate delivery
mode.

This status does not exist for an MQTT device.

EXPIRED

For an NB-IoT device in delayed delivery mode, if the platform does not
deliver a command to the device within a specific time, the command
status is EXPIRED. The expiration time is subject to the value of
expireTime carried in the command request. If expireTime is not carried,

Trainee Guide for IoT Engineers Page 96

Status Description

the default value (48 hours) is used.

This status does not exist for an NB-IoT device in immediate delivery
mode.

This status does not exist for an MQTT device.

CANCELED If you cancel a pending command, the command status is CANCELED.

SENT

For an NB-IoT device in delayed delivery mode, the platform sends a
cached command when receiving data reported by the device. In this
case, the command status changes from PENDING to SENT.

For an NB-IoT device in immediate delivery mode, if the device is online
when the platform delivers a command, the command status is SENT.

If an MQTT device is online when the IoT platform delivers a command,
the task status is SENT.

TIMEOUT

If the platform does not receive a response within 180 seconds after
delivering a command to an NB-IoT device, the command status is
TIMEOUT.

This status does not exist for an MQTT device.

DELIVERED
If the platform receives a response from a device, the command status
is DELIVERED.

SUCCESSFUL
If the platform receives a result indicating that the command execution
succeeded, the command status is SUCCESSFUL.

FAILED

If the platform receives a result indicating that the command execution
failed, the command status is FAILED.

For an NB-IoT device in immediate delivery mode, if the device is offline
when the platform delivers a command, the command status is FAILED.

If an MQTT device is offline when the IoT platform delivers a command,
the task status is FAILED.

You can use command delivery to remotely control devices. Command delivery is
applicable when you need to perform an operation on a large number of devices or on a
device that is located in a remote place.

9.3.3.3 Device Linkage Rules
You can customize rules based on predefined rule scenarios.

Rules can be bound with devices, applications, or alarms. When a specific condition is
met, the corresponding action is performed. Using the rule engine, abnormal events can
be promptly notified and handled. Rule engine helps end users maintain and monitor
devices and ensure fast recovery of system services. Location tracing events or events that
occur when a threshold is reached can be defined as triggers for rules and configured
with corresponding actions.

Trainee Guide for IoT Engineers Page 97

Figure 9-12 shows the triggers and actions of device linkage rules.

Figure 9-12 Device linkage rules

9.3.3.4 Firmware and Software Upgrades
The IoT platform can upgrade the firmware and software of devices in OTA mode.

 Firmware upgrade

Firmware upgrade, also called firmware over the air (FOTA), allows users to upgrade
the firmware of LwM2M devices and CoAP devices in OTA mode. The firmware
upgrade protocol is LwM2M.

 Software upgrade

Software upgrade, also called software over the air (SOTA), allows users to upgrade
the software of LwM2M devices and CoAP devices in OTA mode. The firmware
upgrade protocol is PCP.

Trainee Guide for IoT Engineers Page 98

Figure 9-13 Firmware and software upgrades

9.3.3.5 Batch Operations
The IoT platform supports batch operations on devices. The batch operations include
batch device registration, command delivery, location upload, device configuration, and
software and firmware upgrades.

Batch device registration: It takes a long time to register a large number of devices one
by one. Batch registration is recommended to speed up the process.

Batch command delivery: To deliver commands to devices in batches, create a batch
command delivery task through the API and view the execution status, operator, and
success rate of the task on the console.

Batch location upload: The locations of a large number of devices can be uploaded in
batches. This operation applies to devices that are installed at a fixed location, for
example, water meters.

Batch device configuration: A large number of devices can be configured in batches.

Batch software/firmware upgrades: You can create a batch software/firmware upgrade
task on the platform to upgrade software/firmware of devices in batches.

Batch operations enable the IoT platform to manage devices in a unified manner. Batch
operation applies to the scenario in which a large number of devices want to register
with the IoT platform or a user wants to perform the same operation on all devices or
devices in a group. A maximum of 30,000 devices can be registered or have their
locations uploaded in batch. A maximum of 10,000 devices can be configured and
upgraded in batch. A command can be delivered to a maximum of 10,000 devices in
batch.

9.3.4 Data Forwarding
The IoT platform can work with other HUAWEI CLOUD services to process and forward
device data on demand. You do not need to purchase servers to store, calculate, and
analyze device data. Figure 9-14 shows the data forwarding process.

Figure 9-14 Data forwarding process

Trainee Guide for IoT Engineers Page 99

9.3.5 Application Integration
9.3.5.1 Application-side RESTful APIs

The IoT platform provides more than 40 RESTful APIs for third-party application
developers to quickly integrate IoT platform functions. Currently, the IoT platform
provides the following types of APIs, as described in Table 9-9.

Table 9-9 Typical API categories and application scenarios

API Category Description

Subscription
management

APIs

Used by applications to subscribe to device information. If the
subscribed device information changes, the IoT platform pushes
messages to the applications.

Tag management
APIs

Used by applications to manage tags. Only device tags are
supported.

Batch task APIs
Used by applications to perform batch operations on connected
devices. Only batch software or firmware upgrades are supported.

Device CA
certificate

management
APIs

Used by applications to manage device CA certificates, which are
used for device access authentication.

Group
management

APIs

Used by applications to manage groups and group members.
Groups are used to manage devices by group.

Device message
APIs

Used by applications to deliver messages to devices. The difference
between messages and commands is that messages can be
customized and do not need to be defined in product models.

Product
management

APIs

Used by applications to manage products. Products created using
APIs do not include codecs.

Device
management

APIs

Used by applications to manage devices, including adding,
deleting, modifying, and querying devices and resetting device
secrets.

Device shadow
APIs

Used by applications to manage device shadows, including
querying shadow data and setting desired values.

Device command
APIs

Used by applications to deliver commands to devices. Command
names must be defined in the product models.

Device property
APIs

Used by applications to query and modify device properties.

Rule Enables applications to manage rules. Different APIs are used to

Trainee Guide for IoT Engineers Page 100

API Category Description

management
APIs

create condition-triggered rules and scheduled rules.

9.3.5.2 Application Registration Authentication
IoT applications developed based on the HUAWEI CLOUD IoT platform can call APIs
provided by the platform. The platform uses token authentication provided by HUAWEI
CLOUD Identity and Access Management (IAM) to ensure that only authorized users can
access the platform and use resources and service suites for application development.

Before calling an API, an application must carry API credentials (such as the account
name, username, and password) to obtain a token. The application then uses the token
to call the API to implement services. The token is valid for 24 hours. After the token
expires, the application needs to obtain a new token.

Figure 9-15 Application registration authentication

9.3.5.3 Subscribe/Push
An application can send a subscription request to the IoT platform through an API to
notify the platform of the types of notifications to receive, for example, a change in
device service details, device data, or device registration.

When device details are updated on the IoT platform, the IoT platform pushes messages
to the application over HTTP/HTTPS.

In any given push message, the IoT platform functions as a client and the application
functions as the server. The IoT platform calls the API of the application and pushes
messages to the application.

In this case, if the subscription callback URL is an HTTPS address, you need to upload the
CA certificate to the IoT platform. The CA certificate is provided by the application.

Trainee Guide for IoT Engineers Page 101

Figure 9-16 Subscribe/Push

9.3.6 IoT Analytics
HUAWEI CLOUD provides a series of professional IoT cloud services such as IoT Device
Access and IoT Analytics. IoT Analytics is dedicated for IoT data analysis scenarios. Based
on IoT asset models, the service integrates, cleans, stores, analyzes, and visualizes IoT
data. One-stop IoT data analysis reduces the development threshold, shortens the
development period, and accelerates IoT data monetization. Figure 9-17 shows why data
analysis is required.

Figure 9-17 Why data analysis is required (see the Appendix for a reference
image)

Trainee Guide for IoT Engineers Page 102

Figure 9-18 IoT data characteristics (see the Appendix for a reference
image)

 Asset model

Building an asset model is the basis for understanding IoT data. Building an asset
model is to establish relationships between things, between things and space, and
between things and people, so that data can be understood in context. An asset
model is the mapping of assets in the physical world to the digital world. Data on
both sides is synchronized in quasi-real time to implement digital twins. IoT Analytics
abstracts data reported by different devices based on the asset model and converts
the data into a format that can be understood by services. See Figure 9-19.

Figure 9-19 Asset model (see the Appendix for a reference image)

 Time series data processing is the key

Write performance: How do we meet the requirements for high concurrency and
real-time write for a large number of devices?

Compression ratio: Some IoT devices may generate a large amount of data. Higher
compression directly reduces costs.

Trainee Guide for IoT Engineers Page 103

Query efficiency: How do we meet high-performance query requirements, especially
time-based aggregation query, for IoT data accumulated over a long period of time?

 Multi-temperature data management maximizes processing efficiency

Figure 9-20 Data processing by layer

 Efficient data cleansing provides high-quality data for analysis

Figure 9-21 Data cleansing

Unlike the solution of forwarding device data to the general data analysis service, IoT
Analytics is designed for IoT scenarios.

IoT Analytics integrates, archives, and analyzes data from IoT Device Access and
third-party services. The analysis engine understands data based on asset models
and supports real-time, time series, and offline analysis. In addition to data analysis,
IoT Analytics provides industry analysis suites for industries like smart logistics and
new-energy vehicles. The analyzed data can be used by the AI platform or provided
to third-party applications or other HUAWEI CLOUD services. Figure 9-22 shows the
architecture of IoT Analytics.

Trainee Guide for IoT Engineers Page 104

Figure 9-22 IoT Analytics structure (see the Appendix for a reference image)

 Offline analysis

IoT data developers can quickly build an IoT data lake. They can use standard SQL
jobs to develop IoT data analytics tasks and easily process TBs or even EBs of IoT
data.

The data lake supports cost-effective, massive data storage. It can seamlessly
connect to IoT Device Access for instant access to a wealth of IoT data sources. It can
also preprocess IoT data based on the IoT asset models to prepare for data analysis.

With the highly available and horizontally expandable framework of big data, big
data analytics uses the in-memory computing model, directed acyclic graph (DAG)
scheduling framework, and efficient optimizer to deliver a comprehensive
performance 100 times higher than that of the traditional MapReduce model.
Developers can complete batch analysis on IoT data with ease.

Standard SQL APIs are provided. IoT data developers do not need to worry about the
deployment and O&M of the SQL processing engine. They only need to focus on IoT
services, develop analysis jobs, and configure job scheduling policies. See Figure 9-23.

Trainee Guide for IoT Engineers Page 105

Figure 9-23 Offline analysis

 Real-time analysis

Real-time analysis on IoT data is provided based on the big data stream computing
engine. To reduce skill requirements for stream analysis job development, IoT
Analytics provides graphical stream orchestration so you can quickly develop and roll
out services by dragging and dropping components.

Graphical stream orchestration: Visual stream orchestration IDE allows you to define
IoT stream analysis jobs through drag-and-drop operations without writing SQL
statements.

IoT stream orchestration operators: Based on typical IoT application scenarios,
common operators are encapsulated, such as data access, data filtering, and data
conversion. See Figure 9-24.

Trainee Guide for IoT Engineers Page 106

Figure 9-24 Real-time analysis (see the Appendix for a reference image)

 Time series analysis

Figure 9-25 illustrates the time series characteristics of IoT data.

Figure 9-25 Time series characteristics of IoT data

Trainee Guide for IoT Engineers Page 107

You can use IoT time series data processing functions, for example, time series data
storage with high compression ratio, efficient time series query, and massive
timeline.

 Massive access: hundreds of millions of timelines

 Time series storage: columnar storage and dedicated compression algorithms with a
high compression ratio

 Efficient query: Time-based multi-dimensional aggregation, and near-real-time
analysis and query

 Data visualization: Time series insight tools provided for IoT data analysts to explore
time series data

Figure 9-26 Time series analysis

9.3.7 IoT Studio
IoT Studio is a one-stop application development platform for IoT developers. It provides
visualized development and online application hosting to help enterprises quickly build
web applications and easily manage global devices.

Pain Points

Small- and medium-sized enterprises want to quickly build applications with limited up-
front investment.

Small- and medium-sized device manufacturers have limited personnel available for
software development. Software development, application construction, and IoT service
rollout are slow and expensive.

Key Features

 Quick build: An IoT web application can be built in just 5 to 10 minutes, thanks to
30+ visualized components

 Low cost: on-demand, free industry templates

 Easy O&M: professional O&M support for application hosting from Huawei

Trainee Guide for IoT Engineers Page 108

Figure 9-27 IoT Studio

9.3.8 Other Related Services
9.3.8.1 Edge Computing

Edge computing addresses the pain points of direct device-cloud interconnection.

An edge is a part of an entity or a logical concept that is far away from the center and
close to the boundary. In the data processing field, edge computing is derived from cloud
computing. It refers to the process of building compute nodes that integrate network,
compute, storage, and application functions on the side close to data sources to provide
data processing nearby, instead of transferring all data to the cloud for processing. Cloud
computing aims to centralize data to the cloud for processing. Why do we need edge
computing? Let's use an IoT scenario as an example.

Let's say an enterprise wants to upgrade its industrial park into a smart campus and
connect all devices in the campus to the IoT platform for unified management. There are
too many types of devices such as video surveillance devices, access control devices,
firefighting devices, and water and electricity devices. All these devices report data based
on their own industry protocols. The IoT platform supports a limited number of
communications protocols. A heavy workload is required to convert these industry-
specific protocols into those supported by the IoT platform.

In addition, employee data in the access control system is private data, and transferring
such data to the cloud violates the security policies of the enterprise. Connecting all
systems except the access control system to the cloud would result in high maintenance
costs and poor linkage between systems.

Let's say a vehicle enterprise has encountered similar problems. This enterprise produces
self-driving vehicles that interact with the IoT platform through an in-vehicle system to

Trainee Guide for IoT Engineers Page 109

obtain self-driving instructions. Unstable network signals on the road are a big problem.
Due to poor signals, it may take several seconds for a vehicle to report data to the cloud
and receive an instruction from the cloud. This latency may result in death or injury.

The preceding problems are the pain points of direct cloud-device interconnection. They
can be solved by edge computing.

What can edge computing do in the IoT?

 Open ecosystem

Edge computing is a concept. When discussing what it can do, we need to assign it
an entity. In this section, we will use the IoT Edge service provided by the Huawei IoT
platform as the entity. IoT Edge is deployed at the edge close to devices or data
sources to provide real-time services. It integrates network, compute, storage, and
application capabilities to make applications intelligent and data secure. The core
capabilities of IoT Edge can be described from three aspects.

An edge node is a server with independent access and compute functions. It is like
the "cerebellum" of the IoT. IoT Edge does not require a specific physical object. As
long as the hardware meets the requirements, the IoT Edge software package can be
deployed in Docker container mode to support device access, device linkage, and
low-latency local management.

IoT Edge allows users to develop third-party access protocol drivers and deliver them
to edge nodes through the cloud so that devices using these protocols can access the
platform. IoT Edge also allows users to develop and deploy third-party edge
container applications to expand the function of edge nodes. With open hardware,
protocols, and applications, IoT Edge can meet custom requirements in different IoT
scenarios.

 Edge-cloud synergy

Although edge nodes have independent computing functions, the value of the
"cerebellum" can be brought into full play only through cooperation with the
"cerebrum". Edge-cloud synergy is the trump card of IoT Edge. IoT Edge provides a
graphical operation interface on the cloud. On this interface, you can manage edge
nodes, and perform unified application deployment, node O&M, and service
management.

Trainee Guide for IoT Engineers Page 110

Figure 9-28 Edge computing features (see the Appendix for a reference
image)

After an edge node is managed, it can work with the cloud to implement layered
service processing. For example, in IoV scenarios, for services that need to be
processed in a timely manner, such as automated driving and V2X, the edge nodes
directly calculate data and return the result. For services that are insensitive to
latency and involve a large amount of data, such as large-screen monitoring and big
data analytics, data is transferred to the cloud for processing. Another example is
campus scenarios where private user data is collected, processed, and stored on the
local node. After being cleaned and summarized, non-private data is uploaded to the
cloud for machine learning and training, so local intelligent algorithms can be
continuously optimized. Layer-based service processing maximizes the value of the
IoT and powers IoE.

The edge and cloud are connected through the network. If the network is faulty, the
edge is disconnected from the cloud. How do we ensure edge services in this case?
IoT Edge provides local autonomy for edge nodes. If the network is abnormal, the
rules and AI models delivered by the cloud can still run properly at the edge to
ensure service continuity. After the network is recovered, the data is synchronized to
the cloud. In addition, the edge node provides a local console, which can be logged
in to without connecting to the network, allowing for management autonomy.

 Edge intelligence

The edge can clean data. Specifically, the edge filters, deduplicates, and aggregates
data reported by devices and then reports the data to the cloud. Data cleaning is
applicable to scenarios where data needs to be selectively reported to the cloud to
reduce the bandwidth, storage, and computing resources used.

Filter criteria are used for data filtering. For example, for a filter criterion with
property A greater than 10, all data that meets this criterion is filtered. You can
specify multiple criteria, with the relationship between them set to AND or OR. If the
relationship is AND, the data that meets all the criteria is filtered. If the relationship
is OR, the data that meets any criterion is filtered. If a device continuously reports
messages with duplicate property values, the edge node reports only the first
message to the cloud. This is deduplication. Aggregation means that the edge node
aggregates data reported by each device in a time window (for example, one hour)
into one piece of data. The user can specify the aggregation method for each
property in the data, for example, obtaining the maximum/minimum value, the sum,
and the average. The priorities of the three types of data cleaning rules are as
follows: filtering > deduplication > aggregation. If you set all the three types of rules,
data is filtered, deduplicated, and then aggregated before being reported.

9.3.8.2 Global SIM Link
Global SIM Link provides cellular IoT directional data plans and intelligent network
selection using eSIM/vSIM cards. The service enables customers to use local data plans on
a platform that is globally accessible with single-point access.

Pain points:

Trainee Guide for IoT Engineers Page 111

 Difficult deployment: IoT devices are installed in different locations, such as on the
top of a building or in a passageway. Cabling and ditch digging are not allowed in
these locations, and wireless connection is required.

 Difficulty obtaining cost-effective data plans in foreign countries: If an enterprise
produces IoT devices in country A and sells them in country B, they need to use data
plans of carriers in country B. The negotiation process is time-consuming.

 Difficulty changing SIM cards: IoT devices may be deployed in locations covered by
signals from multiple carrier networks. They are expected to use a network with a
better signal without changing SIM cards.

 Difficult card management: Enterprises need to connect to multiple carriers around
the world in SIM card management. This poses great challenges to integration.

Solution:

Global SIM Link provides 2G/3G/4G and NB-IoT connections for IoT devices and IoT SIM
card data plans in and outside of China (covering more than 100 countries and regions).
Remote eSIM/vSIM provisioning enables on-demand selection of networks operated by
more than 80 carriers around the world.

9.3.9 Characteristics of the HUAWEI CLOUD IoT Platform
9.3.9.1 Access Agnostic

The IoT platform uses multi-layer ID management and authentication to manage IDs of
developers, applications, devices, and users. It ensures seamless compatibility through
precise database model selection and collaboration between load balancing and data
management modules. The IoT platform provides both wireless and wired access to a
variety of devices and mainstream IoT gateways.

9.3.9.2 Reliable
 System reliability

The IoT platform is installed and deployed based on HUAWEI CLOUD. The system
reliability includes system cluster and VM reliability, as described in Table 9-10.

Table 9-10 System reliability

Item Description

Full system
cluster

Each node in a cluster is equivalent and runs the whole system. Based
on different networking, nodes in a cluster can be expanded as
hardware is expanded.

The front-end load balancer in the cluster can evenly send user requests
to the IoT platform. Specifically, the load balancer distributes and
schedules user requests based on the corresponding algorithm to
achieve load balancing in a cluster.

VM
reliability

Installation and deployment of the cloud platform are supported. On the
cloud platform, VMs are deployed in two modes:

1+1: used to deploy the active and standby instances of one service in
two VMs.

Trainee Guide for IoT Engineers Page 112

Item Description

N+M: used to deploy a group of load-sharing services in multiple VMs.

 Network reliability

Table 9-11 describes the network reliability policies of the IoT platform.

Table 9-11 Network reliability policies

Item Description

1+1 mutual
backup

Half of the capacity of each site is reserved for taking over services
from the other site.

Pool mode
The number of sites is N. Each site has 1/N idle capacity to take
over services from a faulty site.

 Service reliability

Table 9-12 Service reliability policies

Item Description

Flow control
Communication is interrupted or suspended to ensure normal
service running when the system is overloaded.

Data encryption

Sensitive data is encrypted before being stored. For example,
phone numbers are encrypted or obfuscated before being stored.
Secure storage configuration is added for device data items in
service domain objects. Security processing is performed based on
the secure data configuration.

Number
shielding

Phone numbers are shielded when users query user data or export
user lists on the web portal.

 Module reliability

Table 9-13 Module reliability policies

Item Description

Rule engine
module

Embedded in applications, the rule engine module allows users to
make policy decisions as needed. Scalability and maintainability of
the IoT platform are enhanced.

API Server
module

OAuth authorization provides security isolation between users and
application servers. Only authorized users can access services
provided by the application servers.

Trainee Guide for IoT Engineers Page 113

Item Description

Database module
The database module of the IoT platform uses the active-standby
pattern to ensure data reliability.

9.3.9.3 Secure
The IoT platform has its own security strategies, including device, networking, service,
access, data storage, and access security strategies.

The IoT platform provides open security capabilities, including ID authentication,
authorization, and security associations. The security strategies are designed based on
security specifications defined by standards organizations and best practices in the
industry. These specifications include ITU X.805 hierarchy and threat analysis,
oneM2M/ETSI security solutions and risks, 3GPP access security, IETF TLS/DTLS, OWASP
security standards, and STRIDE security threat identification methods. The security
strategies are also designed using the minimum authorization and multi-level protection
principles. See Figure 9-29.

Figure 9-29 Secure

9.3.9.4 Scalable
The IoT platform uses a cloud-based architecture and can be easily deployed on the
cloud platform to provide a variety of services.

Flexible platform deployment: The IoT platform can be flexibly deployed on servers or the
cloud.

Aggregated vertical capabilities: The IoT platform can serve one or more industries.

Compatibility: The IoT platform is compatible with smart devices from different
manufacturers.

Trainee Guide for IoT Engineers Page 114

Modularized services and flexible combination: A single service or multiple services can be
deployed.

9.3.9.5 Open
The IoT platform provides a variety of open APIs, including communication capability,
network capability, and user data APIs. The IoT platform also provides open device
management capabilities and an entrance for end users to access the platform and
perform operations. It provides SDKs so that developers only need to drag and drop SDKs
to implement service logic.

Open APIs: The IoT platform provides a variety of open APIs for third-party application
integration, eliminating repeated development.

Diverse IoT Agents: Agents are provided to adapt to different OSs and hardware.

Pre-integration with high-value industries: The IoT platform provides partners with pre-
integrated high-value industry services, including smart home, IoV, and smart metering.

Open device management: Service providers use a web-service interface to access and
remotely operate devices.

Trainee Guide for IoT Engineers Page 115

10 IoT Platform Secondary
Development

10.1 Introduction to Platform Secondary Development
The HUAWEI CLOUD IoT platform enables southbound and northbound data exchange.
Developers need to perform secondary development using this platform to provide end-
to-end IoT services.

10.2 Product Development
In the IoT platform integration solution, the IoT platform provides open APIs for
applications to connect devices that use various protocols. To provide richer device
management capabilities, the IoT platform needs to understand the device capabilities
and the formats of data reported by devices. Therefore, you need to develop product
models and codecs on the IoT platform. To create an IoT solution based on the HUAWEI
CLOUD IoT platform, you must perform the operations described in Table 10-1.

Table 10-1 Device access process

Operation Description

Product
development

Manage products, develop product models and codecs, and perform
online debugging on the IoT Device Access (IoTDA) console.

Development
on the

application
side

Carry out development for interconnection between applications and
the platform, including calling APIs, obtaining service data, and
managing HTTPS certificates.

Development
on the

device side

Integrate and interconnect devices with the IoT platform, including
connecting devices to the IoT platform, reporting service data to the
platform, and processing commands delivered by the platform.

The process of using IoTDA, including product, application, device, and routine
management.

Product development: You can perform development operations on the IoTDA console.
For example, you can create a product or device, develop a product model or codec
online, perform online debugging, carry out self-service testing, and release products.

Trainee Guide for IoT Engineers Page 116

Development on the device side: You can connect devices to the platform by
integrating SDKs or modules, or using native protocols.

Figure 10-1 IoT solution development process based on the IoT platform
(see the Appendix for a reference image)

Development on the application side: The platform provides robust device
management capabilities through APIs. You can develop applications based on the APIs
to meet requirements in different industries such as smart city, smart campus, smart
industry, and IoV.

Routine management: After a physical device is connected to the platform, you can
perform routine device management on the IoTDA console or by calling APIs.

Trainee Guide for IoT Engineers Page 117

Figure 10-2 Routine management in the cloud

10.2.1 Product Model
A product model, also known as a profile, defines the properties of a device, such as the
color, size, collected data, identifiable commands, and reported events. The manufacturer,
device type, and device model are used together to uniquely identify a product model.
You can easily develop product models on the IoTDA console without writing any code.

A product model is a file that describes what a device is, what it can do, and how to
control it. You can build an abstract model of a device by defining a product model on
the IoT platform so that the platform can know what services, properties, and commands
are supported by the device, such as its color or any on/off switches. After defining a
product model, you can use it during device registration.

Figure 10-3 Product model (see the Appendix for a reference image)

On the IoT platform, the product model is the key to device access. It contains the
capabilities and services of a device and the data formats of upstream and downstream
device messages. For example, when a device reports data to the IoT platform, the IoT
platform matches the product model based on keywords of the reported data and verifies

Trainee Guide for IoT Engineers Page 118

the data format. Only data that is matched is saved on the IoT platform. If the reported
data is not matched with the configuration in the product model, the data is considered
invalid and dropped.

Product details:

Product details describe basic information about a device, including the manufacturer ID,
manufacturer name, device type, and protocol. For example, the manufacturer name of a
water meter could be HZYB, the manufacturer ID TestUtf8ManuId, the device type
WaterMeter, and the protocol CoAP.

Service capabilities:

Service capabilities are divided into several services. The properties, commands, and
command parameters of each service are defined in the product model. Take a water
meter as an example. It has multiple capabilities, such as reporting data about the water
flow, alarms, power, and connections, and receiving commands from a server. When
describing the capabilities of a water meter, the profile includes five services, each of
which has its own properties or commands.

10.2.1.2 Product Model Example: Smart Water Meter

Table 10-2 Water meter service capabilities

Service Description

Basics (WaterMeterBasic)

Used to define parameters reported by the water meter,
such as the water flow, temperature, and pressure. If
these parameters need to be controlled or modified
using commands, you also need to define parameters in
the commands.

Alarm (WaterMeterAlarm)
Used to define data reported by the water meter in
various alarm scenarios. Commands need to be defined
if necessary.

Battery (Battery)
Used to define data including the voltage and current
intensity of the water meter.

Transmission rule
(DeliverySchedule)

Used to define transmission rules for the water meter.
Commands need to be defined if necessary.

Connectivity (Connectivity)
Used to define connection parameters of the water
meter.

Trainee Guide for IoT Engineers Page 119

Figure 10-4 Product model example (see the Appendix for a reference

image)

The IoT platform provides multiple methods for developing product models. You can
select one that suits to your needs.

 Importing models (preset product models on the platform)

 Uploading a profile (offline development)

 Importing models in an Excel file

 Customizing functions (online development)

10.2.2 Codec
10.2.2.1 Overview

What Is a Codec?

The codec decodes binary data reported by devices into JSON data that can be read by
applications. It also encodes commands in JSON format delivered by applications into
binary data that can be executed by devices.

Why Is a Codec Used?

NB-IoT devices use data in binary or TLV format.

CoAP is used for communications between NB-IoT devices and the IoT platform. The
payload of CoAP messages carries data at the application layer, at which the data type is
defined by the devices. Because NB-IoT devices have high requirements on power
consumption, their application layer data is generally not in JSON format.

Applications do not understand data in binary or TLV format.

How Do We Develop a Codec?

The IoT platform provides three methods for developing codecs. Offline codec
development is complex and time-consuming. Graphical codec development is
recommended.

Graphical development: The codec of a product can be quickly developed in a visualized
manner on the IoTDA console.

Trainee Guide for IoT Engineers Page 120

Offline Development: A codec is developed through secondary development based on
the Java codec demo to implement encoding, decoding, packaging, and quality
inspection.

Script-based development: JavaScript scripts are used to implement encoding and
decoding.

The IoT platform abstracts and encapsulates the original codec development code.
Therefore, developers can develop codecs simply by defining the format of code streams
reported by devices and mapping the properties in the code streams and the profiles in a
graphical way. When the development is complete, the codec is automatically generated
and can be deployed on the IoT platform.

For an upstream message sent by a device, the CoAP packet is parsed to obtain the
application layer data, the codec provided by the device manufacturer is invoked to
decode the message, and then the message is sent to an application. For a downstream
message sent by an application, the codec provided by the device manufacturer is
invoked to assemble a CoAP message, and then the message is sent to the device. See
Figure 10-5 for details. The codec also encodes commands and responses to reported
device data sent by the platform.

Figure 10-5 Functions of codec in NB-IoT scenarios

10.2.2.2 Data Reporting
The message processing flow includes data reporting and command delivery, as shown in
Figure 10-6.

Trainee Guide for IoT Engineers Page 121

Figure 10-6 Data reporting process (see the Appendix for a reference image)

After being registered with the IoT platform and powered on, a device can collect and
report data based on the service logic. Data collection and reporting can be triggered by
a schedule or by specific events. Data can be sent to the platform through the following
APIs:

Reporting device messages: A device reports custom data to the platform through
message reporting APIs. The platform does not parse or store the messages reported.
Instead, it forwards the messages to other HUAWEI CLOUD services for storage and
processing based on data forwarding rules. Then, the data is further processed through
the consoles or APIs of the other services.

Raw device data (binary) reporting: A device reports raw code streams through binary
reporting APIs. The platform uses codecs to parse the raw data into data in JSON format
defined by the product model and reports the parsed data to IoTDA for service
processing.

Device property reporting: A device reports property data defined in the product model
through property reporting APIs. The platform parses the data and reports the data to
IoTDA for service processing.

Batch property reporting: A gateway reports data of a batch of devices to the platform at
a time. The platform parses the data and reports the data to IoTDA for service
processing.

In the data reporting process, the codec is used in the following scenarios:

1. Decoding binary data reported by a device into JSON data and sending the data to an
application.

2. Encoding the JSON data returned by an application into binary data and sending the
data to a device.

Trainee Guide for IoT Engineers Page 122

10.2.2.3 Command Delivery
The IoT platform delivers a command to a device, and the device responds to and
executes the command. In this way, the IoT platform can remotely control the device.

The following figures show immediate delivery and delayed delivery of LwM2M/CoAP
and MQTT commands.

Figure 10-7 Immediate delivery of LwM2M/CoAP device commands (see the
Appendix for a reference image)

Figure 10-8 Delayed delivery of LwM2M/CoAP device commands (see the
Appendix for a reference image)

Trainee Guide for IoT Engineers Page 123

An application delivers a command to the IoT platform. The IoT platform finds the
corresponding codec based on the product information, encodes the command request,
and delivers the command to the device. At the same time, the IoT platform sends a
command status to the application. When the device responds to the command, the IoT
platform changes the command status to Successful or Failed.

Figure 10-9 Immediate delivery of MQTT device commands (see the
Appendix for a reference image)

Codec is not required and device commands are transparently transmitted. An application
delivers a command to the IoT platform. The IoT platform delivers the command to the
device and returns the execution result.

Figure 10-10 Delayed delivery of MQTT device commands (see the Appendix
for a reference image)

Trainee Guide for IoT Engineers Page 124

An application delivers a command, and the IoT platform writes data to the cache queue
and updates the message status when the device is offline. When the device goes online
and subscribes to messages delivered by a topic, the platform delivers the message and
updates the message status.

Codec example

Figure 10-11 Codec example (see the Appendix for a reference image)

10.3 Development on the Application Side
The IoT platform provides APIs to make application development easier and more
efficient. You can call these open APIs to quickly integrate platform functions, such as
product, device, subscription, and rule management, as well as command delivery.

Figure 10-12 Development on the application side

Applications must be authenticated by the IAM service and obtain tokens to integrate
functions such as product and device management.

Trainee Guide for IoT Engineers Page 125

10.3.1 Calling APIs
The HUAWEI CLOUD IoT platform provides a variety of RESTful APIs for application
developers to quickly develop IoT applications based on the capabilities provided by the
platform.

10.3.1.1 Making an API Request
A request URI is in the following format:

{URI-scheme} :// {Endpoint} / {resource-path} ? {query-string}

Although a request URI is included in the request header, most programming languages
or frameworks require the request URI to be transmitted separately.

URI-scheme: protocol used to transmit the request. All APIs use HTTPS.

Endpoint: domain name or IP address of the server bearing the REST service endpoint.
Obtain the value from Regions and Endpoints. For example, the endpoint of the IoT
platform in CN North-Beijing4 is iotda.cn-north-4.myhuaweicloud.com.

resource-path: access path of an API for performing a specific operation. Obtain the path
from the URI of an API. For example, resource-path of the API for querying products is
/v5/iot/{project_id}/products/{product_id}.

query-string: query parameter, which is optional. Ensure that a question mark (?) is
included before each query parameter that is in the format of "Parameter
name=Parameter value". For example, ? limit=10 indicates that a maximum of 10 data
records will be displayed.

For example, to obtain information about a specific product from the IoT platform in
CNNorth-Beijing4, combine the endpoint (iotda.cn-north-4.myhuaweicloud.com) of
the CN North-Beijing4 region and resource-path
(/v5/iot/{project_id}/products/{product_id}) in the URI of the API for Querying a
Product. The following is an example:

https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}

Request Methods

The HTTP protocol defines the following request methods that can be used to send a
request to the server:

GET: requests the server to return specific resources.

PUT: requests the server to update specific resources.

POST: requests the server to add resources or perform special operations.

DELETE: requests the server to delete specific resources, for example, objects.

HEAD: same as GET except that the server must return only the response header.

PATCH: requests the server to update partial content of a specific resource. If the
resource does not exist, the PATCH method creates a resource.

For example, in the URI of the API for Querying a Product, the request method is GET.
The request is as follows:

https://developer.huaweicloud.com/en-us/endpoint
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0052.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0052.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0052.html

Trainee Guide for IoT Engineers Page 126

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}

Request Message Header

You can add header fields, for example, fields required by a specific URI or HTTP method,
to a request header. For example, to request authentication information, add Content-
Type, which specifies the request body type.

Common request header fields are as follows:

Content-Type: request body type or format. This field is mandatory and its default value
is application/json. Other values of this field will be provided for specific APIs if any.

X-Auth-Token: user token. This field is mandatory when token authentication is used.
You can call the API for Obtaining a User Token Through Password Authentication to
obtain the value. In the response message header returned by the API, X-Subject-Token
is the desired user token.

The API for Querying a Product requires authentication. Therefore, the Content-Type and
X-Auth-Token fields need to be added to the header of the request for calling the API.
An example of such a request is as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}

Content-Type: application/json
X-Auth-Token: ******

Request Message Body

A request body is generally sent in a structured format. It corresponds to Content-Type
in the request header and transfers data other than the request header. If the request
body supports Chinese characters, the Chinese characters must be encoded in UTF-8
mode.

The message body in API requests varies according to APIs. Certain APIs, such as the GET
and DELETE APIs, do not require a message body.

For the API for Creating a Product, you can obtain the required request parameters and
parameter description from the API request. The following is an example request with the
body included. Replace the italic fields in bold with the actual values. For example, name
indicates the product name, device_type indicates the device type, and protocol_type
indicates the protocol type used by the device.

POST https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/abab***cdcd/products
Content-Type: application/json
X-Auth-Token: ********

{
 "name" : "Thermometer",
 "device_type" : "Thermometer",

https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0052.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html

Trainee Guide for IoT Engineers Page 127

 "protocol_type" : "MQTT",
 "data_format" : "binary",
 "manufacturer_name" : "ABC",
 "industry" : "smartCity",
 "description" : "this is a thermometer produced by Huawei",
 "service_capabilities" : [{
 "service_type" : "temperature",
 "service_id" : "temperature",
 "description" : "temperature",
 "properties" : [{
 "unit" : "centigrade",
 "min" : "1",
 "method" : "R",
 "max" : "100",
 "data_type" : "decimal",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : true,
 "property_name" : "temperature",
 "max_length" : 100
 }],
 "commands" : [{
 "command_name" : "reboot",
 "responses" : [{
 "response_name" : "ACK",
 "paras" : [{
 "unit" : "km/h",
 "min" : "1",
 "max" : "100",
 "para_name" : "force",
 "data_type" : "string",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : false,
 "max_length" : 100
 }]
 }],
 "paras" : [{
 "unit" : "km/h",
 "min" : "1",
 "max" : "100",
 "para_name" : "force",
 "data_type" : "string",
 "description" : "force",
 "step" : 0.1,
 "enum_list" : ["string"],
 "required" : false,
 "max_length" : 100
 }]
 }],
 "option" : "Mandatory"
 }],
 "app_id" : "jeQDJQZltU8iKgFFoW060F5SGZka"

Trainee Guide for IoT Engineers Page 128

}

10.3.1.2 Authentication
Requests for calling an API can be authenticated in either of the following methods:

Using tokens: General requests are authenticated using tokens.

Using Access Key/Secret Access Key (AK/SK): Requests are authenticated by encrypting
the request body using an AK/SK.

Token authentication

A token is a character string generated by the server and is used for a client to send a
request. After the first login, the server generates a token and returns the token to the
client. In subsequent requests, the client needs to carry the token, but not the username
and password. The validity period of a token is 24 hours, which starts from the time
when the client obtains the token. If the same token needs to be used for authentication,
it is recommended that the token be cached to avoid frequent calling. Before the token
expires, you must obtain a new token. Otherwise, the authentication on the server will
fail after the token expires.

If you obtain the token for multiple times, the latest token is used. The previous token
will be overwritten and become invalid.

A token specifies temporary permissions in a computer system. During API authentication
using a token, the token is added to requests to get permissions for calling the API.

To obtain a token, call the API for Obtaining a User Token Through Password
Authentication. The following is an example:

POST https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens
Content-Type: application/json

{
 "auth": {
 "identity": {
 "methods": [
 "password"
],
 "password": {
 "user": {
 "name": "username",
 "password": "********",
 "domain": {
 "name": "domainname"
 }
 }
 }
 },
 "scope": {
 "project": {
 "name": "xxxxxxxx"
 }
 }

https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html
https://support.huaweicloud.com/en-us/api-iam/iam_30_0001.html

Trainee Guide for IoT Engineers Page 129

 }
}

Note: username indicates the IAM user name, password indicates the password for
logging in to HUAWEI CLOUD, domainname indicates the account name, and
projectname indicates the project name.

Figure 10-13 API credential (see the Appendix for a reference image)

In the response to the API used to obtain a token, X-Subject-Token is the token
obtained.

The X-Auth-Token header field must be included to carry the token when calling other
APIs. For example, if the token is ABCDEFJ...., X-Auth-Token: ABCDEFJ.... can be added
to a request as follows:

GET https://iotda.cn-north-4.myhuaweicloud.com/v5/iot/{project_id}/products/{product_id}
Content-Type: application/json
X-Auth-Token: ABCDEFJ....

AK/SK-based Authentication

Authentication using AK/SK supports API requests with a body not larger than 12 MB. For
API requests with a larger body, authentication using tokens is recommended.

AK/SK is used to sign requests and the signature is then added to the request headers for
authentication.

AK: access key ID, the unique ID associated with a secret access key. The AppKey and
AppSecret are used together to obtain an encrypted signature for a request.

SK: secret access key used together with an AK to sign requests cryptographically. It
identifies a request sender and prevents the request from being tampered with.

In AK/SK-based authentication, you can use AK/SK to sign requests based on the
signature algorithm or use a dedicated signature SDK to sign requests.

Unlike the SDKs provided by services, the signature SDK supports only signature.

Trainee Guide for IoT Engineers Page 130

10.3.1.3 Returning a Response
Status Code

After sending a request, you will receive a response, including the status code, response
header, and response body.

A status code is a group of digits, ranging from 1xx to 5xx. It indicates the status of a
request. For details, see Status Code.

If 201 is returned for calling the API for Creating a Product, the request is successful.

Response Header

Similar to a request, a response also has a header, for example, Content-Type.

For the API for Creating a Product, the platform will return a response containing
message headers, for example, Content-Type and Date.

Response Body

The body of a response is often returned in structured format as specified in the
Content-Type header field. The response body transfers content except the response
header.

The following is part of the response body for the API for Creating a Product:

{
 "product_id" : "5ba24f5ebbe8f56f5a14f605",
 "name" : "Thermometer",
 "device_type" : "Thermometer",
 "protocol_type" : "LWM2M",
 "data_format" : "binary",
 "manufacturer_name" : "ABC",
 "industry" : "smartCity",
 "description" : "this is a thermometer produced by Huawei",

}

If an error occurs during API calling, an error code and error description will be displayed.
The following shows an error response body:

{
 "error_msg": "The format of message is error",
 "error_code": "IOTDA.013005"
}

In the preceding information, error_code is an error code, and error_msg describes the
error.

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_1000.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0050.html

Trainee Guide for IoT Engineers Page 131

10.3.2 API
10.3.2.1 Creating a Device

This API is used by an application to create a device on the IoT platform. The device can
access the IoT platform only after being created.

This API can use the gateway_id parameter to create a child device under a parent
device. Currently, a maximum of two levels of child devices are supported.

This API also supports initial device configuration. The API reads the product details
provided in the product_id parameter in the device creation request. If the default value
of a product property is defined, the default value is written to the device shadow.

You can also use the shadow field in the device creation request to specify the initial
configuration for the device. After the initial configuration is specified, the system
compares the property values set based on service_id and desired with the default
values of the corresponding properties in the product. If the property values are different,
the property values set in the shadow field are written to the device shadow.

Figure 10-14 API for creating a device (see the Appendix for a reference
image)

Trainee Guide for IoT Engineers Page 132

10.3.2.2 Querying a Device
This API is used by an application to query the details of a device on the IoT platform.

Figure 10-15 API for querying a device (see the Appendix for a reference
image)

10.3.2.3 Modifying Device Information
This API is used by an application to modify the basic information of a device on the IoT
platform.

Figure 10-16 API for modifying device information (see the Appendix for a
reference image)

Trainee Guide for IoT Engineers Page 133

10.3.2.4 Querying Device Messages
This API is used by an application to query messages of a device. By default, the platform
stores a maximum of 20 messages for each device. If the number of messages exceeds
20, the earliest messages will be overwritten by subsequent messages.

Figure 10-17 API for querying device messages (see the Appendix for a
reference image)

10.3.2.5 Deleting a Device
This API is used by an application to delete a device from the platform. If the device is
connected to an indirectly connected device, you must delete the indirectly connected
device first.

Trainee Guide for IoT Engineers Page 134

Figure 10-18 API for deleting a device (see the Appendix for a reference
image)

To view more APIs, scan the QR code in Figure 10-19 to view the API list.

Figure 10-19 API document

10.4 Development on the Device Side
You can use IoT Device SDKs to quickly connect devices to the IoT platform. After being
integrated with the IoT Device SDK, devices that support the TCP/IP protocol stack can
directly communicate with the IoT platform. Devices that do not support the TCP/IP
protocol stack (such as Bluetooth and Zigbee devices) need to use the gateway to
forward device data to the IoT platform. In this case, the gateway must be integrated
with the IoT Device SDK in advance. MQTT is the first choice for IoT communications. The
HUAWEI CLOUD IoT platform allows devices to connect to the IoT platform using MQTT.
You are advised to use the IoT Device SDK to connect devices to the platform over
MQTTS.

Development mode on the device side:

 Certified MCU development

The IoT Device SDK Tiny has been pre-integrated into the main control unit (MCU)
and can call methods to connect to the platform. This development mode is
applicable to the scenario where devices need to be quickly put into commercial use,
with low R&D costs. Devices are connected to the platform directly, without using
gateways.

 Certificated module development

The IoT Device SDK Tiny has been pre-integrated into the module and can invoke AT
commands to connect to the platform. This development mode is applicable to the

https://support.huaweicloud.com/en-us/api-iothub/iot_06_v5_0003.html

Trainee Guide for IoT Engineers Page 135

scenario where there are few MCU resources. Devices are connected to the platform
directly, without using gateways.

 LiteOS development

Devices run LiteOS that manages MCU resources. In addition, LiteOS has a built-in
IoT Device SDK Tiny that can call functions to connect to the platform. This
development mode shortens the device development duration and reduces the
development difficulty. It applies to directly connected devices that do not have OSs
and do not need to manage child devices.

 Common development

The IoT Device SDK Tiny is integrated into the MCU and calls the SDK functions to
connect to the platform. This type of call is more convenient than API access. This
development mode is applicable to the scenario where there is sufficient time for
devices to put into commercial use, and the flash and RAM resources of the MCU
meet the conditions for integrating the IoT Device SDK Tiny.

 OpenCPU module development

The MCU capability in the common module is used, and device applications are
compiled and run on the OpenCPU. This development mode is applicable to devices
that have high security requirements, are small in size, and need to be quickly put
into commercial use.

 Gateway development

The IoT Device SDK is pre-integrated into the CPU or MPU and can call functions to
connect to the platform. This development mode is applicable to gateways that
manage child devices.

Trainee Guide for IoT Engineers Page 136

Figure 10-20 Development on the device side

Using IoT Device SDKs for access

You can use IoT Device SDKs to quickly connect devices to the IoT platform. After being
integrated with the IoT Device SDK, devices that support the TCP/IP protocol stack can
directly communicate with the IoT platform. Devices that do not support the TCP/IP
protocol stack, such as Bluetooth and Zigbee devices, need to use a gateway integrated
with the IoT Device SDK to communicate with the platform.

1. Create a product on the IoTDA console or by calling the API Creating a Product.

2. Register the device on the IoTDA console or by calling the API Creating a Device.

3. Implement the functions demonstrated in Figure 10-21, including reporting
messages/properties, receiving commands/properties/messages, OTA upgrades, topic
customization, and generic-protocol access.

Figure 10-21 Using IoT Device SDKs for access

Using Huawei-certified modules for access

Certified modules are pre-integrated with the IoT Device SDK Tiny. They have passed
Huawei tests, and comply with Huawei's AT command specifications. The following
benefits are available for Huawei-certified modules:

Device manufacturers do not need to worry about how to connect to the HUAWEI
CLOUD IoT platform on the MCU (for example, how to set the secret encryption
algorithm and clientID composition mode during MQTT connection setup). To connect
their devices to the platform, they only need to invoke AT commands. This accelerates
device interconnection and commissioning.

Trainee Guide for IoT Engineers Page 137

The MCU does not need to integrate the MQTT protocol stack or IoT Device SDK Tiny,
greatly reducing MCU resource consumption.

Huawei releases certified modules on HUAWEI CLOUD Marketplace so that device
manufacturers and service providers can purchase these certified modules to quickly
connect to HUAWEI CLOUD IoT.

Figure 10-22 shows how a certified module is used to connect a device to the platform.

Figure 10-22 Using certified modules to develop devices

Device authentication

The platform authenticates a device when the device attempts to access the platform.
The authentication process depends on the access method.

Table 10-3 Device authentication

Access Type Description

Device connected
using LwM2M over

CoAP

Call the API Creating a Device or use the IoTDA console to
register a device with the platform, and set the node ID (for
example, the IMEI) as the verification code. The device can
use the node ID to get authenticated and connect to the
platform.

When Datagram Transport Layer Security (DTLS) or DTLS+ is
used, the transmission channel between the device and
platform is encrypted by using a PSK.

Device using native
MQTT or MQTTS

Call the API Creating a Device or use the IoTDA console to
register a device with the platform, and hardcode the device
ID and secret returned by the platform into the device. A CA
certificate is preset on MQTTS devices, but not MQTT devices.
The device uses the device ID and secret to get authenticated
and connect to the platform.

Authentication for devices using LwM2M over CoAP

Trainee Guide for IoT Engineers Page 138

Figure 10-23 Authentication for devices using LwM2M over CoAP (see the
Appendix for a reference image)

1. An application calls the API Creating a Device to register a device. Alternatively, a user
uses the IoTDA console to register a device.

2-3. The platform allocates a globally unique PSK to the device and returns timeout.

4. The user hardcodes PSK into the device hardware, software, or firmware.

5. The user powers on the device. The device sends a connection request carrying the
node ID (for example, IMEI) and PSK.

6-7. If the authentication is successful, the platform returns a success message, and the
device is connected to the platform.

Authentication for devices using native MQTT or MQTTS

Trainee Guide for IoT Engineers Page 139

Figure 10-24 Authentication for devices using native MQTT or MQTTS (see
the Appendix for a reference image)

1. An application calls the API Creating a Device to register a device. Alternatively, a
user uses the IoTDA console to register a device.

2. The platform allocates a globally unique device ID and secret to the device.

3. The user hardcodes the device ID and secret to the device hardware, software, or
firmware.

4. (Optional) The user presets the CA certificate on the device. This step is required only
for devices connected using MQTTS.

5. The user powers on the device. The device sends a connection request carrying the
device ID and secret.

6. If the authentication is successful, the platform returns a success message, and the
device is connected to the platform.

Trainee Guide for IoT Engineers Page 140

11 IoT OS

From this chapter, you will start to acquire knowledge about the sensing layer. In this
chapter, readers will understand what an operating system (OS) is, the OS development
process, and the challenges faced by the IoT OS. In addition, this chapter describes the
basic concepts and solutions of Huawei's IoT OS, known as LiteOS.

11.1 Preliminary Study of the OS

11.1.1 Concept
Most people have experienced OSs such as Windows and Linux used on computers and
iOS and Android on mobile phones. OSs play a very important role in human-computer
interaction. As such, it is important to understand what an operating system is.

This section describes the concept of the OS from the perspective of the modern
computer system. First of all, the microcomputer system can be divided into two parts:
the hardware system and the software system. In the hardware system, there are two
main types: the host and peripherals. The host contains devices such as the CPU and
storage device. Peripherals are external devices, such as the mouse, keyboard, disk, and
monitor.

The software system is also divided into two parts: system software and application
software. The system software includes the OS and other required tools such as
development tools and diagnosis programs. The application software includes the
software that is commonly used in everyday life, such as Word and PowerPoint.

Modern computer systems consist of one or more processors, main memory, disks,
printers, keyboards, mouse devices, monitors, network interfaces, and other input/output
devices. A modern computer system is considered a complex system. If application
programmers had to master every detail of the system, it would not be possible for them
to write code. Moreover, managing and optimizing the use of these components is a
daunting task. So, a layer of software called an OS is installed on the computer, which is
tasked with providing a better, simpler, and clearer computer model for user programs
and managing all the devices just mentioned.

Put simply, the OS is a program that manages and controls all software and hardware
resources. Essentially, this program is the basis and core for running other programs on
your computer. Only with an OS can the user run other programs on the computer,
control the hardware operated by the user (such as the keyboard and mouse), as well as
the CPU and memory in the computer host.

Trainee Guide for IoT Engineers Page 141

The difference between an OS and a normal application is not just their positions.
Another major difference is that the OS is larger, more complex, and longer-lived. The
source code of the Linux or Windows system has 5 million lines or more. This makes it
difficult to write code for the OS, which is why the OS has a long service life. Once the
code of the OS is written, the owner of the OS certainly does not want to start again
from scratch. Instead, the OS continuously evolves over a long period of time.

11.1.2 History
OSs have been around for decades. This section will briefly introduce the history of the
OS.

The first generation of OSs began in the 1940s, when engineers from the same group
designed, built, transformed, operated, and maintained one machine. At that time, all
programming was written in pure machine language, with thousands of cables needing
to be connected to the plug-in board to control the basic functions of the machine. There
was no programming language, not even assembly language, and no one had ever heard
of an OS, because all operations were performed by humans. In general, a programmer
used a machine by booking a time on the machine's timetable on the wall, before going
to the computer room and connecting the plug-in board to the computer. For the next
few hours, the programmer has nothing to do but hope that the more than 20,000
vacuum tubes in operation will not burn out. At that time, all calculations were actually
simple mathematical operations, such as making sines, cosines, and logarithmic tables, or
calculating cannonball trajectories.

By the early 1950s, significant improvements had been made. For example, punched
cards had emerged, allowing programs to be written on the cards and then read by the
computer without the plug-in board. But the rest of the process remained the same. In
the late 1950s, the invention of transistors dramatically changed the landscape.
Manufacturers could then mass produce and sell computers to users, who expected them
to run for long periods of time and do all kinds of useful work.

The second-generation OS, also known as the batch-processing OS, was very expensive at
the time, making it vital to find ways to reduce the waste of machine time. To this end,
the programmer collected the jobs in the input room, read them on a tape using a
relatively inexpensive computer, and then did the real calculations with a more expensive
computer. After the bulk of jobs were collected, the program in the card was written onto
the tape and mounted to the tape drive. The OS then read the first job from the tape and
ran it, and its output was written onto the second tape without printing. At the end of
each job, the OS automatically read the next job from the tape and ran it. After a batch
of jobs were completed, the operator took out the input and output tapes, replaced the
input tapes with the next batch of jobs, and then took the output tapes to a relatively
cheap computer for printing.

Then, the multi-channel batch processing OS introduced by the use of integrated circuits
worked on the principle of multi-channel program design. The principle was to allow
multiple programs to be entered and run in the memory at the same time to reduce the
CPU idle time. For programmers, however, they missed using the first-generation OS
because, at that time, they could exclusively occupy a machine for several hours, allowing
them to get real-time feedback on program debugging. However, the second- and third-

Trainee Guide for IoT Engineers Page 142

generation OSs required them to wait for a long time. This situation led to the
emergence of time-sharing systems.

A time-sharing system was actually a variant of multiple programs. Each user had an
online terminal, which divided the running time of the processor into short time slices
and allocated the processor to each online job in the order based on the time slices. If a
job could not complete its calculation within the allocated time slice, the job was
suspended and the processor was taken over by other jobs. The job would then continue
to be run after the next round. Because of the high-speed computing and job rotation, it
seemed to each user that they had exclusive use of a computer.

Although the multi-channel batch processing system and the time-sharing system can
obtain satisfactory resource utilization and system response time, they cannot meet the
requirements for real-time control and information processing. To this end, a real-time
system was generated. That is, the system can quickly respond to random external events
and process the events within a strict time frame. This means certain urgent tasks can be
completed within a certain time limit without waiting in a time slice queue. There are
two types of time limits. If an action must occur at a specified time (or within a specified
time range), it is called a hard real-time system. An example of this is automatic flight
control systems for aircraft, which must provide absolute assurance that a particular
action will be completed within a specified time frame. The other type is known as soft
real-time systems, such as flight booking systems and bank management systems, which
can tolerate occasional time violations that do not cause any permanent damage.

Another key development that began in the mid-1980s was the growth of personal
computer networks running network OSs and distributed OSs. On a network OS, a user is
aware of the existence of multiple computers, and can log in to a remote machine and
copy files from one machine to another. Each computer runs its own local OS and has its
own local user.

In essence, there is no difference between a network OS and a single-processor OS. Of
course, they need a network interface controller and some underlying software to drive it,
as well as programs for remote login and remote file access, but these add-ons do not
change the essential structure of the OS.

In contrast, a distributed OS is presented to users as a traditional single-processor OS,
despite being made up of multiple processors. Users are not aware of where their
programs are running or where their files are stored. These should be handled effectively
by the OS itself.

A real distributed OS is more than just the addition of a small piece of code to a
standalone OS, as it is essentially different from a centralized system. For example, a
distributed system usually allows an application to run on multiple processors at the
same time, requiring a more complex processor scheduling algorithm to obtain maximum
parallelism optimization.

The communication delay in the network often results in the need for the distributed
algorithm to adapt to the environment of incomplete, outdated, and even incorrect
information. This is fundamentally different from a standalone system, in which the OS
has all the information about the entire system.

Trainee Guide for IoT Engineers Page 143

11.1.3 Development
With the emergence of new technologies, computers have developed from transistors to
integrated circuits, large-scale integrated circuits, and micro-computers. In addition,
modern society has evolved from the Internet era where computers are used, to the
mobile Internet era where mobile computers (mobile phones) are used, and then to the
Internet of Things (IoT) era. In the IoT era, IoT devices are extremely diverse, and their
architectures and protocols are sophisticated. In this era, building an operating system
with unified management is difficult but essential.

So why is it essential to build an IoT operating system? The reason is that in every
generation of electronic devices, OSs compete fiercely for prominence. For example,
Windows has long been, and still is, the leading OS for personal computers. For mobile
devices, Android and iOS take center stage.

It is no different in the IoT era. Currently, all enterprises may be in the development
phase. However, there is only room for one or two OSs to lead the entire IoT industry.
Although the IoT OS was built for IoT, its applications will extend beyond IoT. But unlike
a computer and a mobile phone, an IoT is more like a network that connects all
electronic devices together, and can be said to have only an auxiliary role.

So what should we be focusing on in the development of IoT? In fact, we should focus on
developing AR and VR. Mark Zuckerberg, the founder of Facebook, once said that "VR is
going to be the most social platform". So, we can expect the use of VR and AR devices to
increase hugely in the future. But what is this prediction based on? With the emergence
of 5G, the network transmission rate is set to greatly increase. This increased rate will
make it easier to communicate with our colleagues when we work from home. And with
the continuous development of AR and VR technologies, we can communicate face to
face across long distances through VR or AR devices. This will revolutionize the way we
work and interact with people.

For example, British Airways has developed a service that provides users with an
immersive experience of traveling to their destinations before they even board their
flights. Another possible application is to help us perform services such as telemedicine.
Therefore, AR and VR devices could very well become the new tools for users to interact
with computers.

Our goal is to develop new ways for users to interact with machines, such as using AR
and VR, in addition to OSs for the IoT. Therefore, it is very important to build such an OS
for AR and VR devices.

11.2 Challenges to the IoT OS
After understanding the importance and benefits of the IoT operating system, let's take a
look at the challenges that we will face when developing such an operating system. This
section describes the challenges we faced when developing IoT terminals and the OS.

Trainee Guide for IoT Engineers Page 144

11.2.1 IoT Terminal Development
We are developing an OS running on IoT terminals. However, there are many types of
IoT terminals, which all use different chips and architectures. For example, some may use
ARM, embedded FPGA, x86, or DSP architectures. When we develop these devices, we
need to adapt to different interfaces.

Not only do these terminals use different chips and architectures, they also use different
communication protocols. Taking smart home as an example, the devices and
communication protocols used are sophisticated. For example, the Bluetooth speakers in
our home use the Bluetooth protocol, which enables low power consumption. The
protocols ZigBee and Z-Wave are used for smart lamps and thermostats. These protocols
can connect to a large number of devices, provide high security performance, and
support self-networking.

For cameras and air conditioners, we use the Wi-Fi protocol; for air quality monitors, we
use the IPv6-based 6LowPAN protocol. There are so many different possible applications
at home, such as lighting, security, and entertainment. Different protocols are used for
different devices. Therefore, multiple protocols and communication technologies are
developed, and developers need to adapt and interconnect them.

11.2.2 IoT OS Development
In the OS itself, developers also face a very big challenge. Take the smart band as an
example. It has many sensors, such as the acceleration sensor and heart rate detector,
which all need to be managed together. In terms of videos, a high-definition video has a
large file size and consumes a lot of power. For example, when a portable camera is used
to shoot a high-definition video such as 4K 60 fps, it consumes a lot of power. So enable
users to capture high-quality videos with low power consumption is a challenge.

To sum up, we need to make our terminals smarter. There are three different aspects of
smartness. The first is intelligent management, which is what computers do. The OS of a
computer mainly connects and uses resources in all the parts of the computer. The OS of
the IoT is no different. It also needs to manage various IoT terminals in a unified manner
and allocate resources. The second is intelligent connectivity. We need to enable devices
that use different communication protocols to communicate with each other. The third
and final aspect is intelligent networking. We need to use the mesh networking
technology to build a smart, self-organized, and self-connected network for all devices.

11.3 Huawei LiteOS

11.3.1 Introduction to Huawei LiteOS
Based on the requirements for terminals that we have just mentioned, Huawei provides
the IoT OS LiteOS to make terminals smarter. LiteOS is an open-source OS, which uses
the "1 + N" architecture. 1 indicates a kernel, and N indicates N middleware. All the
middleware can be added or removed according to the user's needs, like the different
parts of the Iron Man's suit. The purpose of building such a lightweight and flexible OS is

Trainee Guide for IoT Engineers Page 145

to quickly open up the IoT market and enable a large number of developers to
participate in the construction of such an IoT ecosystem.

11.3.2 Commercial Use of Huawei LiteOS
Currently, many commercial devices in the industry are running on the LiteOS system. As
we have just mentioned, such a lightweight operating system is designed to quickly open
up the IoT market. In the NB-IoT chip field, LiteOS supports more than 50% of chips. In
the MCU joint commercial solution, LiteOS supports 90% of mainstream MCU chips to
make it easier to launch the IoT solution. In addition, not only mobile phones, but also
wearable devices and other types of IoT terminals are running on our LiteOS, and their
delivery volume reaches millions or even tens of millions. Therefore, the market in this
field is huge.

At the beginning, Huawei LiteOS was used in mobile phones or wearable devices in the
consumer field. Afterwards, the OS was applied to various terminals in the IoT industry.
The reason why LiteOS can be applied to the two different fields is that the two
seemingly different scenarios have common requirements.

11.3.3 Huawei LiteOS Industry Applications
In the consumer mobile phone field, Huawei LiteOS runs on coprocessors loaded with the
Kirin series chipsets. It is mainly used to control all sensors in the mobile phone, with the
aim of reducing power consumption and improving measurement accuracy.

The same is true with smart bands in the consumer field, for which it is mainly used to
reduce power consumption. HUAWEI Band was the first smart device to showcase
Huawei LiteOS. It can control all sensors on the band, and Huawei LiteOS smart sensing
framework helps solve problems in multi-sensor high-precision sampling and data
synchronization. Because the power consumption is reduced, the standby time of the
device is prolonged.

In addition, LiteOS can be used on IoT terminals, such as cameras. With the LiteOS
system, the camera can be quickly started up. Due to LiteOS's low power consumption,
the camera can be battery-powered, meaning it can be conveniently deployed outdoors.
Also, features such as smart hibernation and quick wakeup of Huawei LiteOS enable
cameras to save power and quickly respond to events. Quick camera wakeup is especially
important in the smart home field. For example, if an intruder enters a house and the
camera cannot be quickly woken up and respond to the intrusion event, the opportunity
to take a picture of the intruder may be missed. As such, the camera fails to fulfill the
very task it was designed for. The smart camera wakeup function effectively overcomes
this.

Similarly, LiteOS can be used in smart homes for various terminals inside the home.
Huawei LiteOS instructs mobile phone sensors (such as the screen) to implement mobile
phone sensor identification and interconnection between smart home appliances. In this
way, users can perform operations on other home devices when the mobile phone screen
is turned off. In addition, Huawei LiteOS can provide more concise and intelligent
operation experience based on features such as smart scenario awareness of mobile
phones. Huawei LiteOS also optimizes the interconnection protocols at multiple layers,
such as the OS layer and network connection protocol layer. One the one hand, Huawei
LiteOS implements more real-time communication between devices, achieving "zero"

Trainee Guide for IoT Engineers Page 146

wait for user operations, while on the other, Huawei LiteOS ensures more reliable and
smooth connections and reduces frame freezing during user operations.

In the LPWA field, Huawei LiteOS can be used in solutions such as smart water meters
and smart parking. In the smart water metering solution, Huawei LiteOS can be directly
used on NB-IoT chips to control sensors. Unlike other OSs which control the MCU, use
the MCU to control the bottom-layer sensors, and use AT commands to connect NB-IoT
chips, Huawei LiteOS can directly control the communication module and control the
sensors to directly communicate with the base station.

In the smart parking field, Huawei LiteOS is used in the geomagnetic vehicle detector and
runs on the NB-IoT chip. The lightweight kernel and other components in the OS work
with Huawei NB-IoT chips to integrate sensing and interconnection. One chip supports
both data transmission through NB-IoT and application sensing algorithms. Based on its
open APIs, Huawei LiteOS enables parking sensing algorithms and applications to be
seamlessly migrated to NB-IoT chips for deployment. In addition, the Huawei LiteOS
sensing framework optimizes application algorithms and improves efficiency, eliminating
unnecessary MCU, memory, and storage costs. By default, the Huawei LiteOS
interconnection protocol stack supports interconnection with the HUAWEI CLOUD IoT
platform. In addition to making devices plug-and-play, the Huawei LiteOS
interconnection protocol stack collaborates with the HUAWEI CLOUD IoT platform to
upgrade firmware, algorithms, and applications, reducing the operation costs of the
parking system. Huawei LiteOS uses the lightweight platform architecture, dynamic and
distributed loading technology, and "Run-Stop" mechanism to drive the entire software
stack to implement ultra-low power consumption in standby state, allowing parking
devices to operate with extremely low power consumption.

Trainee Guide for IoT Engineers Page 147

12 Sensing Layer Development

This chapter describes the knowledge required for the IoT sensing layer from the
perspective of development.

Figure 12-1 E2E integrated IoT development

Figure 12-1 shows all the parts required for end-to-end integrated IoT development,
which is divided into two sections: development on the terminal side and development on
the application (platform) side, which have been described in chapter 10. The
development on the terminal side can be divided into two parts. The first is hardware
development, which includes the PCB design. As the experiment in this course does not
involve hardware development, this chapter only describes some basic knowledge
regarding single-chip microcomputers and sensors.

For the second part, software development, we must become familiar with the
development of terminal software and module interconnection. This part will introduce
the basic architecture of the Huawei LiteOS system to help you complete the software
development on the terminal side.

This chapter will be divided into two parts: hardware development at the sensing layer
and software development at the sensing layer.

Trainee Guide for IoT Engineers Page 148

12.2 Hardware Development at the Sensing Layer

12.2.1 Single-Chip Microcomputer Basics
12.2.1.1 Microcomputer Working Principles

Because in the previous chapters, there is no relevant content about the single-chip
microcomputers and readers may know little about the single-chip microcomputers, this
section will start from the computer that readers are familiar with to introduce the
single-chip microcomputer.

Figure 12-2 Single-function circuit

The most important function of a computer is its ability to compute. As such, during
hardware development, we will develop and design hardware circuits to implement the
computing function. This requires knowledge of digital and analog circuits, which is too
complex to expand on here.

Figure 12-3 Circuit with the select function

As shown in Figure 12-2, for example, if developers want a computer to be able to add
two numbers, they can design circuits to achieve this function. However, if they want to
implement additional functions, such as the subtraction of two numbers, they must

Trainee Guide for IoT Engineers Page 149

design additional circuits that are totally independent of the previous one. This is
problematic and often a waste of space and manufacturing costs. Therefore, if we want
to implement multiple functions in the circuits, a multiplexer shown in Figure 12-3 must
be added to properly select each one.

Figure 12-4 Modern computer model

But while we may have multiple functions, the most important memory function of the
computer has not yet been realized. A circuit with no memory means that it can run only
once, and it can be very complicated to repeat this step from scratch after the result is
obtained. In this case, the registers shown in Figure 12-4 need to be added to store the
previous data or the commands that you want to run. After the circuit contains each of
these elements, it can be regarded as a complete computer. All modern computers are
designed on the basis of this principle, and only vary based on the complexity of the
circuit.

After we understand how a computer works, it becomes clear that implementing
different functions is equivalent to executing the content in a program. A program
actually runs through a series of simple commands to process computer data step by
step. Here comes another important concept in the single-chip microcomputer, that is,
the instruction set.

12.2.1.2 Instruction Set
On a computer, an instruction is a command that directs the computer hardware to
perform an operation or process a function. An instruction is the smallest functional unit
for a computer to run, and hardware implements the functions specified by each
instruction. The computer instruction system, also called an instruction set, is the
collection of all instructions on that computer and embodies all of the computer's
functions. That is, the instruction set must be designed based on the functions, and then
implemented on the hardware according to the instruction set. Beyond instructions, the
instruction system also includes instruction formats, addressing modes, and data formats
for all instructions.

Therefore, the instruction system executed by each computer determines both the
capability that the machine requires, as well as its instruction format and the structure.

Trainee Guide for IoT Engineers Page 150

However, machines that have different structures and instruction formats should have
matching instruction systems. Therefore, when designing the instruction system, we
should pay attention to the instruction format, type, and operation function. The
software is a program of various systems and users written for computers to use. The
program consists of a sequence of computer instructions. From this point of view,
instructions are a unit of computer language used to design programs.

For example, a programmer wants to design a program that converts degrees Celsius
into degrees Fahrenheit, which involves a number of different steps: first reading this
Celsius degree data, subtracting 273 from it, multiplying the result by 1.8, and adding
32. Finally, the result is output. In this program, each step represents a data operation
instructed by the computer. For this reason, the instruction set of a CPU is very
important. That is, whether the instruction set is advanced or not affects the performance
of the CPU, which means that it is an important indicator of the CPU performance.
Indeed, the instruction set is one of the most effective tools to improve the efficiency of
microprocessors.

In terms of a current mainstream architecture, an instruction set may be divided into two
parts: a complex instruction set computer (CISC) and a reduced instruction set computer
(RISC). Typical examples of CISC include Intel and AMD x86 CPUs, while RISC is typified
by ARM and IBM Power. Most IoT devices use the ARM architecture, with its CPU using
the RISC.

The RISC is designed to reduce the complexity of the CISC CPU by selecting some
instructions that can be executed in a single CPU cycle. For example, a multiplication
instruction provided by CISC can be invoked to multiply two numbers in memory a and
memory b, and save the result in memory a. It may take multiple CPU cycles to complete
the multiplication. The RISC does not provide one-stop multiplication instructions. Rather,
it needs to invoke four single-CPU cycle instructions to multiply two numbers: memory a
is loaded to one register, memory b is loaded to another register, and the numbers in the
two registers are multiplied together. The register result is saved to memory a. According
to this, the number of instructions in the RISC designed in the early stage is less than that
in the CISC. Later on, however, the number of instructions in the RISC exceeds that in the
CISC. Therefore, it is the complexity, not the quantity, of instructions that is referenced to
distinguish the two types of instruction sets.

Of course, the CISC also needs to complete complex instructions by operating a memory,
a register, and an arithmetic unit. During the implementation, complex instructions are
converted into a microprogram, which is stored in the microservice memory when the
CPU is manufactured. A microprogram contains several microinstructions (also called
microcodes). When a complex instruction is executed, it is actually a microprogram that
is executed. This also brings about a difference between the two instruction sets. The
execution of a microprogram cannot be interrupted, while RISC instructions can be
interrupted. Theoretically, RISC can respond to interrupts more quickly.

Therefore, the advantage of RISC is that the RISC system runs 2 to 4 times faster than the
CISC system with the same chip running at the same clock speed. Because the RISC
processor's instruction set is compact, its memory tubes and floating point units can be
designed on the same chip. RISC processors are easier to design than CISC processors,
and require shorter time. RISC processors can use more advanced technologies than CISC
processors and develop next-generation processors faster.

Trainee Guide for IoT Engineers Page 151

12.2.1.3 Processing Units
After understanding the working principle of a computer and the concept of an
instruction set, we next need to examine the integrated circuits and processing units
responsible for computing. First of all, the processing unit can be divided into
microprocessors and microcontrollers. The microprocessor is what we call the CPU, and
this is typically used to handle large-scale, very complex computing. A microprocessor can
only be used to process data, and all other necessary components (such as memory)
must be connected externally to use.

(a) (b)

Figure 12-5 (a) Microprocessor (b) Microcontroller

In contrast, the microcontroller — also known as a single-chip microcomputer - is a very
complete device. It contains a CPU, memory, and a range of input and output devices.
Because the computing power of the CPU in the microcontroller is much weaker than
that of the MPU, the CPU is generally designed for certain embedded devices with low
power consumption.

Another big difference between microcontrollers and microprocessors is the clock
frequency of the CPU. The clock frequency of the MPU is relatively high because the MPU
is usually designed for highly complex task calculations, while the MCU is usually used in
some low-power-consumption devices or IoT devices without a complex computing
capability. To ensure sustained usage, the CPU clock frequency in the MCU is usually
relatively low.

12.2.1.4 Architecture of the Single-Chip Microcomputer
The architecture of the single-chip microcomputer can be divided into four different
parts: CPU, memory, input and output interfaces, and system bus. This section describes
these parts one by one. The first is the CPU, which is mainly used for data processing and
computing. The CPU is used to control the entire system in the single-chip
microcomputer. It reads and decodes program instructions in serial mode and executes
the tasks that require the processor, before finally generating control signals for other
tasks. It performs all arithmetic and logical operations, and MCUs with the same
processor can execute the same program.

The memory and address decoding circuits are included in the storage system. The
memory is classified into two different types. Random access memory, also known as
RAM, is used to store data running in programs. All data stored in RAM is temporary, and
will disappear after a power failure. The second type of memory is known as read-only

Trainee Guide for IoT Engineers Page 152

memory, or ROM, and is used to store programs that need to be executed by a single-
chip microcomputer. Data stored in ROM will not disappear after a power failure, and
will always remain available.

The difference between the ROM and RAM is that the latter is similar to the memory of a
computer and does not store data. However, the RAM occupies the space for caching
data during daily use. ROM, on the other hand, is the computer's hard drive, which is
used to store large amounts of data that will not disappear after the computer is shut
down.

The subsequent input and output interfaces are used to connect to external devices, such
as digital I/O and analog I/O. You can use devices such as data cables to connect them.

Finally, the system bus acts like a wire in a circuit, connecting all parts together for data
communication. Generally, buses can be classified into three types: data bus, address bus,
and control bus. As the name implies, the data bus is used to transmit data between the
CPU, memory, and external devices. The address bus is used by the selection processor to
read or write to a specific memory location, and is characterized by its unidirectional data
flow from the CPU to address bus, and then memory.

The last control bus is used to transmit control or signaling data.

12.2.1.5 ADC and DAC
After understanding the components of the single-chip microcomputer, we can find that
the functions of each component are primarily concerned with data processing and
transfer. It is also important to understand that data processed by the single-chip
microcomputer is digital (0 and 1). The single-chip microcomputer is composed of a
series of complex circuits. However, current, voltage, and other data contained in the
circuits exist in the form of simulation. Therefore, it is essential for a computer to use
digital signals to represent the analog signals found in nature. To achieve this, the DAC
and ADC modules in the single-chip microcomputer are required.

ADC stands for analog-to-digital converter, while DAC stands for digital-to-analog
converter. They may have opposite functions, but both are used for conversion between
analog and digital signals. For example, if we have a simple 2-bit ADC interface, a 2-bit
binary number can represent the following four digits: 00, 01, 10, and 11. Alternatively,
we can say that the voltage values of the interface are classified into four levels. In
addition, the rated voltage of a single-chip microcomputer is 3.3 V. Consequently, when
the voltage is divided into four levels, it is represented by the values 0 V, 1.1 V, 2.2 V, and
3.3 V.

12.2.2 Sensing Technology Basics
After learning the relationship between digital and analog signals, let's move on to
sensors. As a device that collects analog signals in daily life, some sensors contain an ADC
module, enabling them to directly convert analog data in the environment into digital
signals for output.

Sensing technology, otherwise known as sensor technology, can sense the surrounding
environment and collect analog signals to form a series of data. As mentioned previously,
sensing technology resembles the sensory system of our human body, and our five senses
can be loosely compared to five sensors of different types. For example, vision is a
photosensitive sensor and hearing is a sound sensitive sensor. Meanwhile, our sense of

Trainee Guide for IoT Engineers Page 153

smell is a gas sensor, taste is a chemical sensor, and the sense of touch is a pressure
sensor or a temperature sensor.

As the precision of a sensor determines the accuracy of the data collected by the IoT,
sensor technology is of vital importance.

Next, let's take a look at some common sensors.

12.2.2.1 Photoelectric Sensor
Photosensitive sensors are widely utilized across various scenarios, and use photosensitive
elements to convert optical signals into electrical signals. For example, both outdoor light
intensity detection and indoor light monitoring use photosensitive sensors to determine
whether people are indoors.

Figure 12-6 Photoelectric sensor

12.2.2.2 Temperature Sensor
Temperature sensors are more widely used throughout our daily lives, often employed to
measure the working environment of various devices, and even appearing in wristbands
to detect body temperature. Temperature sensors can be divided into two types:
resistance sensing and thermocouple sensing. The goal of resistance sensing is to design
a temperature sensor based on the varying resistance values of metal at different
temperatures. Meanwhile, thermocouple sensing involves connecting two different
metals. When the temperature changes, the potential difference in the thermocouple
circuit can be used to calculate it.

Trainee Guide for IoT Engineers Page 154

Figure 12-7 Temperature sensor

12.2.2.3 Acceleration Sensor
Acceleration sensors can be found in devices such as mobile phones, wristbands, and
gaming devices, and are used to perform such tasks as step counting, earthquake
monitoring, and game control. Typically, acceleration sensors work by leveraging the
piezoelectric effect, and mainly perform acceleration calculation using a manner in which
a voltage is generated due to crystal deformation caused by acceleration inside the
sensor.

Figure 12-8 Acceleration sensor

Trainee Guide for IoT Engineers Page 155

12.2.2.4 Heart Rate Sensor
Last but not least is the pulse sensor, which converts pulse waves into pulse signals. This
sensor is typically used in health monitoring equipment, where the pulse sensor can be
divided into piezoelectric, piezoresistive, and photoelectric types according to different
collection methods. The piezoelectric and piezoresistive types both collect pulse signals
through the use of a pulse, while the photoelectric pulse sensor utilizes an infrared
detection method to measure changes in light transmittance within a blood vessel during
a pulsation process.

12.3 Software Development at the Sensing Layer
This section focuses on the content of Huawei LiteOS. With a good understanding of
LiteOS, developers can better develop applications on devices. Let's first examine the
overall framework of LiteOS. At the bottom layer is the chip with various instruction sets.
LiteOS can be carried on mainstream chips such as ARM and x86 CPUs, in addition to
Huawei-developed chips. Now we have the LiteOS operating system, on which the
applications of different industries are connected.

Figure 12-9 Huawei LiteOS architecture

Trainee Guide for IoT Engineers Page 156

12.3.2 Huawei LiteOS Kernel

Figure 12-10 Basic framework of Huawei LiteOS kernel

The kernel is the most important element of the OS, and serves as the core. While the
LiteOS system can have no other middleware, it must possess this kernel. There are many
components in the kernel, including task management, memory management, and time
management components. The functions of the entire operating system are based on
tasks, which are the smallest units processed by the OS. Tasks are processed by
managing time and hardware.

LiteOS is most often applicable to the IoT field, which is characterized by low power
consumption. Most devices in the IoT field can be used for several years without a battery
change, requiring us to meet strict requirements for low power consumption. In addition
to network technology and chip design, the operating system must also meet these
requirements. As such, the tickless low-power mechanism is supported, enabling the OS
to cooperate with the hardware in order to enter a low power consumption mode.

12.3.2.2 Task
Among all the modules in the kernel, let's focus on the task module first. Tasks are the
smallest running units of an OS. That is, if we want to use an OS to perform a series of
operations, these operations are completed by smaller tasks. A task can use system
resources such as CPU and memory, and each task is independent. What does this mean?
If we divide a problem into several small tasks and require each to calculate different
parts of the problem, these tasks can be processed without following a specific sequence.
For example, when calculating 1+1+1+1, we can arrive at the correct result regardless of
which step of the calculation is performed first.

In addition, it is important to note that the task scheduling mechanism is based on
priorities. That is, tasks are marked with different priorities. When tasks have the same

Trainee Guide for IoT Engineers Page 157

priority, time slice rotation scheduling is called on to divide the time segment. The CPU
processes one task for a period of time before then processing the next, thereby
alternating time segments.

For example, three people (A, B, and C) want to play the same game console. If we use
the time slice rotation scheduling mode to handle this problem, we can let A play for 10
minutes first, then B play for 10 minutes, and finally C play for 10 minutes. The cycle will
then repeat again and again. This is the easiest and fairest way to deal with the problem.

In LiteOS, there are a total of 32 priorities for tasks, the highest of which is 0. A high-
priority task can interrupt a low-priority task at any time, and a low-priority task can only
be calculated after the high-priority process ends.

Table 12-1 Task interface description

Function Category Interface Name Description

Task creation and
deletion

LOS_TaskCreate
Creates a task, so that the task is ready for
scheduling.

LOS_TaskDelete Deletes a task.

Task status control

LOS_TaskResume Resumes a suspended task.

LOS_TaskSuspend Suspends a task.

LOS_TaskDelay Delays a task.

Task scheduling
control

LOS_TaskLock Locks a task.

LOS_TaskUnlock Unlocks a task.

As described in Table 12-1, many different interfaces are used when we perform different
operations with tasks. For example, when we execute the creation and deletion tasks, the
LOS_TaskCreate and LOS_TaskDelete interfaces are used. Many other interfaces are also
invoked during various operations.

To help readers better understand task management, this document provides the
following programming example code for references:

#include "math.h"
#include "time.h"
#include "los_task.h"
#include "los_api_task.h"
#include "los_inspect_entry.h"

#ifdef __cplusplus
#if __cplusplus
extern "C" {
#endif /* __cpluscplus */
#endif /* __cpluscplus */

static UINT32 g_uwTskHiID;
static UINT32 g_uwTskLoID;

Trainee Guide for IoT Engineers Page 158

#define TSK_PRIOR_HI 4
#define TSK_PRIOR_LO 5

static UINT32 Example_TaskHi(VOID)
{
 UINT32 uwRet = LOS_OK;

 dprintf("Enter TaskHi Handler.\r\n");

 /* task delay 5 ticks, task will be suspended */
 uwRet = LOS_TaskDelay(5);
 if (uwRet != LOS_OK)
 {
 dprintf("Delay Task Failed.\r\n");
 return LOS_NOK;
 }

 /* task resumed */
 dprintf("TaskHi LOS_TaskDelay Done.\r\n");

 /* suspend self */
 uwRet = LOS_TaskSuspend(g_uwTskHiID);
 if (uwRet != LOS_OK)
 {
 dprintf("Suspend TaskHi Failed.\r\n");
 uwRet = LOS_InspectStatusSetByID(LOS_INSPECT_TASK, LOS_INSPECT_STU_ERROR);
 if (LOS_OK != uwRet)
 {
 dprintf("Set Inspect Status Err.\r\n");
 }
 return LOS_NOK;
 }

 dprintf("TaskHi LOS_TaskResume Success.\r\n");

 uwRet = LOS_InspectStatusSetByID(LOS_INSPECT_TASK, LOS_INSPECT_STU_SUCCESS);
 if (LOS_OK != uwRet)
 {
 dprintf("Set Inspect Status Err.\r\n");
 }

 /* delete self */
 if(LOS_OK != LOS_TaskDelete(g_uwTskHiID))
 {
 dprintf("TaskHi delete failed .\r\n");
 return LOS_NOK;
 }

 return LOS_OK;
}

static UINT32 Example_TaskLo(VOID)
{
 UINT32 uwRet;

Trainee Guide for IoT Engineers Page 159

 dprintf("Enter TaskLo Handler.\r\n");

 /* task delay 10 ticks, task will be suspended */
 uwRet = LOS_TaskDelay(10);
 if (uwRet != LOS_OK)
 {
 dprintf("Delay TaskLo Failed.\r\n");
 return LOS_NOK;
 }

 dprintf("TaskHi LOS_TaskSuspend Success.\r\n");

 /* resumed task g_uwTskHiID */
 uwRet = LOS_TaskResume(g_uwTskHiID);
 if (uwRet != LOS_OK)
 {
 dprintf("Resume TaskHi Failed.\r\n");
 uwRet = LOS_InspectStatusSetByID(LOS_INSPECT_TASK, LOS_INSPECT_STU_ERROR);
 if (LOS_OK != uwRet)
 {
 dprintf("Set Inspect Status Err.\r\n");
 }
 return LOS_NOK;
 }

 /* delete self */
 if(LOS_OK != LOS_TaskDelete(g_uwTskLoID))
 {
 dprintf("TaskLo delete failed .\r\n");
 return LOS_NOK;
 }

 return LOS_OK;
}

UINT32 Example_TskCaseEntry(VOID)
{
 UINT32 uwRet;
 TSK_INIT_PARAM_S stInitParam;

 /* lock task schedule */
 LOS_TaskLock();

 dprintf("LOS_TaskLock() Success!\r\n");

 stInitParam.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_TaskHi;
 stInitParam.usTaskPrio = TSK_PRIOR_HI;
 stInitParam.pcName = "HIGH_NAME";
 stInitParam.uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE;
 /* create high prio task */
 uwRet = LOS_TaskCreate(&g_uwTskHiID, &stInitParam);
 if (uwRet != LOS_OK)
 {
 LOS_TaskUnlock();

Trainee Guide for IoT Engineers Page 160

 dprintf("Example_TaskHi create Failed!\r\n");
 return LOS_NOK;
 }

 dprintf("Example_TaskHi create Success!\r\n");

 stInitParam.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_TaskLo;
 stInitParam.usTaskPrio = TSK_PRIOR_LO;
 stInitParam.pcName = "LOW_NAME";
 stInitParam.uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE;
 /* create low prio task */
 uwRet = LOS_TaskCreate(&g_uwTskLoID, &stInitParam);
 if (uwRet != LOS_OK)
 {
 /* delete high prio task */
 if (LOS_OK != LOS_TaskDelete(g_uwTskHiID))
 {
 dprintf("TaskHi delete failed .\r\n");
 }

 LOS_TaskUnlock();

 dprintf("Example_TaskLo create Failed!\r\n");

 return LOS_NOK;
 }

 dprintf("Example_TaskLo create Success!\r\n");

 /* unlock task schedule */
 LOS_TaskUnlock();

 return uwRet;
}

#ifdef __cplusplus
#if __cplusplus
}
#endif /* __cpluscplus */
#endif /* __cpluscplus */

This program simulates how the OS operates in the case of high and low priorities. Two
tasks are defined at the beginning of the program. One is named High, and the other is
Low. In addition, two priorities, 4 and 5, are assigned to the two tasks. As mentioned
above, a smaller value indicates a higher priority in LiteOS, making 4 the higher priority.
At the beginning, the program uses the UINT32 Example_TskCaseEntry (VOID) function
to create the two tasks. First of all, because the activity of creating a task is itself a task,
you need to lock the task to prevent other high-priority tasks from interrupting it. Then,
the program displays a message indicating that the task is locked successfully.

Next, the program creates the two tasks. After the tasks are created successfully, the
program displays a message indicating that the TaskHi and TaskLo tasks are created

Trainee Guide for IoT Engineers Page 161

successfully. After that, the program unlocks the locked task. Because no command is
printed in this step, the unlock operation is not displayed in the compilation result.

After the two tasks are created, you need to execute them. The first task is static UINT32
Example_TaskHi(VOID), which has a high priority. At the beginning of the function, the
system displays "Enter TaskHi Handler.\r\n". The program comments indicate that the
program will suspend the task after five ticks. Similarly, the first step of the low-priority
static UINT32 Example_TaskLo(VOID) function is to display the information of entering
the task. While different from the high-priority task, the low-priority task is suspended
after 10 ticks. Technically, a task with a higher priority is suspended earlier than a task
with a lower priority. The high-priority task function continues after the delay. As it is
displayed, after the TaskHi delay ends, the task suspends itself.

Because the task with a higher priority is suspended, the OS automatically starts to
execute the task with a lower priority. Therefore, the program enters the TaskLo task
with a lower priority. After the TaskLo task is delayed, the TaskHi task is suspended, and
the program displays a message indicating that the high-priority task has been
successfully suspended. After that, the program executes the low-priority task to delete
itself. Once this step is complete, because the low-priority task has been completed and
deleted, the OS jumps to handle the suspended high-priority task. The system switches to
the high-priority task and displays a message stating that the TaskHi task continues. The
task with a higher priority is executed successfully and is deleted. Figure 12-11 shows the
compilation result of the entire process.

Figure 12-11 Compilation result of the task management programming
example

12.3.2.3 Memory
Next, let's look at how memory is managed in the kernel module. Memory is an
important part of a computer system, and is responsible for data storage and invoking.
Data is generated as the CPU operates, and this data cannot be stored or invoked
without memory. As a result, memory management is very important, and memory
usage must be carefully planned. For example, when allocating memory, we need to
consider the optimal usage of both large and small blocks. Otherwise, improper
allocation may lead to a waste of memory resources.

The memory management module is responsible for initializing, allocating, and releasing
memory. LiteOS memory management is classified into static and dynamic memory
management, and Huawei LiteOS provides two types of memory management
algorithms: membox for static memory allocation; and bestfit, bestfit_little, and two-level
segregated fit (tlsf) for dynamic memory allocation.

Trainee Guide for IoT Engineers Page 162

Now we'll take a closer look at dynamic memory management. Dynamic memory refers
to allocating memory blocks of a specified size in the dynamic memory pool, which is a
large memory resource configured in the system. Dynamic memory enables memory
resources to be allocated based on user requirements, which is more cost-effective for
users who require large memory resources. The main disadvantage of this approach is
that resources are allocated on demand, requiring both a large block of memory and a
small block of memory. When the small block is allocated, the identifier at the beginning
of the block is used to store information about the size of the small block of resources.
This leads to a waste of resources, as a large proportion of small block resources
becomes occupied. In addition, the allocation of resources on demand results in a high
probability that fragments are generated, as smaller parts of the large block of resources
cannot be allocated.

Static memory management uses a different technique, instead allocating memory
resources in the resource pool to users in a fixed size. The advantage of this approach is
that higher levels of performance and efficiency can be achieved compared with dynamic
memory. In addition, as the size of each resource is fixed, the allocated memory has no
management structure, leading to higher resource usage than with dynamic memory,
and eliminating the fragmentation problem in the process. The main disadvantage,
however, is that the size is fixed and cannot be allocated on demand, and is therefore not
suitable for users with high memory resource requirements.

This document also provides programming examples about memory management. The
example code is as follows:

#include <stdlib.h>
#include "los_config.h"
#include "los_memory.h"
#include "los_api_dynamic_mem.h"
#include "los_inspect_entry.h"

#ifdef __cplusplus
#if __cplusplus
extern "C" {
#endif /* __cpluscplus */
#endif /* __cpluscplus */

#define MEM_DYN_SIZE 256
static UINT32 pDynMem[MEM_DYN_SIZE/4];
extern UINT32 LOS_MemInit(VOID *pPool, UINT32 uwSize);

UINT32 Example_Dyn_Mem(VOID)
{
 UINT32 *p_num = NULL;
 UINT32 uwRet;
 uwRet = LOS_MemInit(pDynMem, MEM_DYN_SIZE);
 if (LOS_OK == uwRet)
 {
 dprintf("mempool init ok! \r\n");
 }
 else
 {
 dprintf("mempool init failed! \r\n");

Trainee Guide for IoT Engineers Page 163

 return LOS_NOK;
 }

 /* mem alloc */
 p_num = (UINT32 *)LOS_MemAlloc(pDynMem, 4);
 if (NULL == p_num)
 {
 dprintf("mem alloc failed! \r\n");
 return LOS_NOK;
 }
 dprintf("mem alloc ok \r\n");

 /* assignment */
 *p_num = 828;
 dprintf("*p_num = %d \r\n", *p_num);

 /* mem free */
 uwRet = LOS_MemFree(pDynMem, p_num);
 if (LOS_OK == uwRet)
 {
 dprintf("mem free ok!\r\n");
 uwRet = LOS_InspectStatusSetByID(LOS_INSPECT_DMEM, LOS_INSPECT_STU_SUCCESS);
 if (LOS_OK != uwRet)
 {
 dprintf("Set Inspect Status Err \r\n");
 }
 }
 else
 {
 dprintf("mem free failed! \r\n");
 uwRet = LOS_InspectStatusSetByID(LOS_INSPECT_DMEM, LOS_INSPECT_STU_ERROR);
 if (LOS_OK != uwRet)
 {
 dprintf("Set Inspect Status Err \r\n");
 }
 return LOS_NOK;
 }
 return LOS_OK;
}

#ifdef __cplusplus
#if __cplusplus
}
#endif /* __cpluscplus */
#endif /* __cpluscplus */

This document takes the allocation of dynamic memory as an example and provides code
to explain the process of memory allocation. This program consists of five steps. The first
step is to initialize a dynamic memory pool. After the initialization is successful, the
program displays a message indicating that the memory is successfully initialized. The
second step is to apply for a memory block in the dynamic memory pool, which equates
to allocating the memory in the program. After that, the program displays a message

Trainee Guide for IoT Engineers Page 164

indicating that the memory is successfully allocated. In the third step, the program
assigns a value to the memory block, and the OS stores the data in the memory block. In
the fourth step, the program displays a message indicating that the memory is
successfully allocated and displays the values in the resource block. Finally, after the
program accomplishes tasks with the memory resource, the program releases the
memory resource and displays a message indicating that the memory is successfully
released. The compilation result is also displayed according to this process.

Figure 12-12 Compilation result of the memory management programming
example

12.3.2.4 Interrupt
The concept of an interrupt is very important with regard to computers. For example, we
have already mentioned that a high-priority task can interrupt a low-priority task in
2.2.1.1, and interrupt technology is used in many specific operations. The best way to
understand this concept is with examples from the real world. For instance, if the phone
rings when we are working on a computer, we will stop using the computer and answer
the phone instead. Once we have ended the call, we will continue with our work.

This example shows how we often interrupt one task in order to deal with another. The
interrupt handling method is very similar to our example. The phone's ring tone is
equivalent to an interrupt request, and answering the call is equivalent to an interrupt
response. An interrupt refers to the process in which the CPU stops to execute a new
program when necessary. As such, an interrupt is not an instant trigger, but an entire
process which ensures the working efficiency of the CPU. As the CPU only needs to
respond to other tasks when an interrupt is generated, it does not need to wait and
query the peripheral status.

In addition, it is important to note that interrupts also have priorities, as multiple
interrupts may occur at the same time in the actual system. In such cases, it is necessary
to differentiate the priorities of these interrupts based on urgency.

12.3.2.5 Queue
Now that we are familiar with task management, memory management, and interrupt
management, let's learn about the communication between tasks. As we have already
seen, task management mainly describes tasks with different priorities. However, the
coordination of multiple tasks is also a problem that needs to be considered by the
operating system. The inter-task communication of the LiteOS system can be
implemented in the queue, event, semaphore, and mutex modes, which are used to
implement the synchronization, mutex, and communication of multiple tasks in the OS.
The following describes each mechanism in detail.

Trainee Guide for IoT Engineers Page 165

The queue is essentially a data structure that can receive messages from tasks or
interrupts, and can choose to deliver or store them. Such a structure is very much like the
box containing table tennis balls or badminton shuttlecocks, with the message
represented by one of the small balls. After we receive the message, we can choose to
save it, similar to placing a ball in the box. At the same time, the message queue can also
function as a buffer, storing messages but not processing them until it is idle. A task can
read messages in the message queue, and the task processing mechanism is suspended
when there are no messages in the queue. When a new message is received, the task is
woken up to process it.

12.3.2.6 Event
Events are used to synchronize tasks, and it is important to note that data transmission
does not occur between them. Instead, they are used only for synchronization between
tasks. Compared with the aforementioned queue, an event is more like a condition for
triggering a task. This mechanism can be triggered by one event or by multiple events at
the same time. LiteOS uses a 32-bit variable to indicate an event (each bit indicates one
event). The value 0 indicates that the event does not occur, and the value 1 indicates that
the event has occurred. A total of 31 time types can be set (because bit 25 is reserved). In
addition, an event can be sent to a task multiple times, which is equivalent to sending
the event only once, and the operating system allows multiple tasks to read and write
the same event.

The following figure shows the event operation mechanism.

Figure 12-13 Event operation mechanism

As shown in Figure 12-13, task A is triggered by event 2 and event 3. The logic is OR,
indicating that task A will be woken up when either event 2 or event 3 occurs. In
addition, task B is interested in event 2 and event 5, and the logic is AND, which indicates
that task B is woken up only when event 2 and event 5 occur at the same time.
Therefore, when only event 2 occurs, task A is triggered, while task B is still in the waiting
state. When event 5 and event 2 occur together, task A is still in the wakeup state, and
task B is also woken up.

Trainee Guide for IoT Engineers Page 166

12.3.2.7 Semaphore
Semaphores are mainly used to implement synchronization between tasks or exclusive
access to critical resources. The first semaphore we'll look at is the synchronization
semaphore. As the name implies, the synchronization semaphore is used to synchronize
tasks, and the specific implementation procedure is as follows:

Figure 12-14 Semaphore operation mechanism

As shown in Figure 12-14, different threads represent different people, and then our
public resources are like a small room that can hold up to four people. When all four
enter the room, it is automatically locked so that no one else can enter. In this way, all
four individuals in the room are synchronized, just like our four thread characters are
synchronized.

12.3.2.8 Mutex
The mutex is a special type of semaphore, also known as a binary semaphore, and is used
to exclusively occupy shared resources. The mutex has only two states, unlocked or
locked.

Trainee Guide for IoT Engineers Page 167

Figure 12-15 Mutex operation mechanism

We can use the following example to explain this: imagine a restroom where only one
person can enter at a time. The door is locked whenever someone enters, and those
outside know that they cannot go in. Only when the first person opens the door and
leaves can the next person go inside. This is the principle of the mutex. When the mutex
of a task is locked, other tasks cannot use the mutex. When the task is released, the
mutex is unlocked and the task loses ownership of the mutex, allowing other tasks to use
it instead.

12.3.2.9 Time Management
The time management of an operating system is very important because many tasks are
directly related to time. For example, we can see here that some programs require us to
wait for a period of time (for example, 10 seconds). The waiting time can be set in the
program because the operating system manages the time based on the system clock,
which is different from the clock we use every day. The system clock uses ticks to count
the time, and as the working frequencies of different CPUs are different, their ticks
represent different real events. Users can use seconds to count time when performing
operations. The time management module is required to convert the generated ticks into
user-perceived time.

12.3.2.10 Timer
OSs also possess timers, which are primarily used to generate interrupts within a fixed
time in order to trigger another step execution. The timer can be classified as either a
hardware timer or a software timer, with the number of hardware timers limited by the
hardware. As such, the OS also provides a software timer to ensure that user
requirements are met.

This approach is similar to virtualization technology on the cloud, where software is also
used to reallocate otherwise limited hardware resources. In our case, we use software to
simulate the timer, which is then implemented based on the system clock interrupt. For
example, the system clock generates an interrupt to achieve the timing effect after
counting the number of ticks. In this way, the number of timers is increased, and
additional timer-related services can be created.

Trainee Guide for IoT Engineers Page 168

12.3.3 Huawei LiteOS Framework

Figure 12-16 Huawei LiteOS framework (see the Appendix for a reference
image)

Figure 12-16 shows the LiteOS framework, that is, the capabilities provided by different
middleware. The framework, which is included in the LiteOS SDK, is the overall
architecture of the LiteOS operating system. The aforementioned kernel is at the bottom
of the architecture diagram, with the SDK in the middle, and user applications at the top.
The SDK contains many components, which can be divided into two parts. The first part is
the interconnection component, which is responsible for interworking with the cloud. A
key function of IoT is to implement interconnection and interworking between IoT
terminals and networks. However, some current IoT terminal systems are still unable to
connect to the Internet due to poorly developed interconnection components.

The second part is enhancement components, which are mainly developed for various
industry partners. Different capabilities are customized for them based on their
requirements. Next, this section will give a brief description of some important
components.

First of all, it is about the device-cloud interworking component. One of the advantages
of this component is that it can be integrated into various communication modules to
enable IoT terminals with limited resources in order to communicate with the cloud. The
communication modules include NB-IoT, eMTC, and Wi-Fi modules. In addition, the
device-cloud interworking component provides device-cloud collaboration, and integrates
a full set of IoT interconnection protocol stacks. As a result, users only need to focus on
their own applications, and the implementation of other parts will be completed in our
operating system. This allows users to reduce development cycles, focus on the
implementation of their own applications, and quickly build products.

In addition to the interconnection framework, we also provide users with complete
protocol stacks of IP, TCP/UDP, and CoAP, which include mesh networking capabilities.
The mesh network connects applications through the CoAP protocol, whereby an
interconnection framework can implement interconnection and interworking between
terminals that use different protocols.

Trainee Guide for IoT Engineers Page 169

While the interconnection framework is mainly used to interconnect sensors that use
different protocols, the sensing framework is used to manage different sensors, which
also use different data transmission protocols. For example, temperature and humidity
sensors may use the SPI, and light sensors may use the IIC. This requires users to compile
code by themselves. However, the sensing framework helps users manage data through
the use of unified driver interfaces, interaction management, and sensing algorithms. This
approach transforms the raw data into various application data, such as that used for
step counting, heart rate detection, and environmental monitoring.

Finally, it comes to the security framework. The security framework can be divided into
three categories based on things, connections, and networks. IoT terminal security is
related to things, and is similar to the security management of mobile phones, including
key management and secure storage. This is equivalent to the storage of fingerprints and
passwords. Transmission security refers to the security of connections between things and
the network layer. And lastly, the IoT networks relate to device-cloud security during
connection to the cloud, including authentication and authorization on the cloud as well
as device authentication.

12.3.4 Huawei LiteOS APIs
Huawei LiteOS APIs are the APIs required for interconnecting the OS with the upper
layer. As we have already mentioned, Huawei's vision for the IoT field involves the
creation of an ecosystem that is open to all, and within which we can work together to
build various IoT applications. In addition, this OS provides open APIs. We aim to enable
application developers to focus only on their own application development while we take
care of other elements, thereby shortening development cycles. LiteOS is also extremely
compatible with Linux, allowing developers who are familiar with such systems to create
brand new applications with ease.

Trainee Guide for IoT Engineers Page 170

13 AT Commands of the
Communication Module

This section describes AT commands related to experiments. When a developer uses
terminals with separate MCUs and communication modules, the MCUs will connect to
the communication modules through AT commands first and then connect to the cloud
platform.

Figure 13-1 Working mode of AT commands

The key point is AT commands. An AT command is used for connection and
communications between terminal equipment (TE) and PC applications. Generally, an AT
command is an instruction set, which is similar to the instruction set used at the sensing
layer of a single-chip microcomputer. This instruction set is used to control the
communications module. Using AT commands, we can easily control devices in different
ways.

Trainee Guide for IoT Engineers Page 171

13.2 Introduction to AT Commands

13.2.1 AT Command Types

Table 13-1 AT command types

Category Syntax Example

Set command AT+<x>=P1 AT+NNMI=1

Test command AT+<x>=? AT+CMEE=?

Read command AT+<x>? AT+CMEE?

Execution command (with
parameters)

AT+<x>=<…> AT+CMEE=0

Execution command
(without parameters)

AT+<x> AT+NRB

There are four types of AT commands: Set, Test, Read, and Execution. These commands
are easy to understand. For example, the AT+CMEE command is used in the NB-IoT
module to report errors. This command has two parameters: 0 and 1. The parameter 1
indicates that the module returns a specific error message when an error occurs, and 0
indicates that the module returns ERROR when an error occurs. So if you want to use it
as a Test command, use AT+CMEE=? If you want to use it as a Read command, use
AT+CMEE? When you run a command with a parameter, it is a Set command. For
example, AT+CMEE=0 is used to set the module to report ERROR (with no detailed error
information) upon an error.

There are commands without parameters, for example, AT+NRB. This command is used
in the NB-IoT module to restart the entire module. The Set command is similar to the
Execution command. The difference is that one has parameters and the other does not.

13.2.2 NB-IoT AT Commands

Table 13-2 Common NB-IoT AT commands

Purpose AT Command

Disabling a function AT+CFUN=0

Checking the software version AT+CGMR

Querying the international
mobile equipment identity

(IMEI)
AT+CGSN=1

Setting the platform address AT+NCDP=xx.xx.xx.xx

Configuring an access point AT+CGDCONT=1,"IP","xxxx"

Trainee Guide for IoT Engineers Page 172

Purpose AT Command

name (APN)

Restarting the module AT+NRB

Enabling a function AT+CFUN=1

Querying the IMSI of a SIM card AT+CIMI

Notifying the terminal of
connecting to the base station

AT+CSCON=1

Notifying the terminal of
connecting to the core network

AT+CEREG=2

Notifying the terminal of
downlink data transmission

AT+NNMI=1

Notifying the terminal of
successful data transmission

AT+NSMI=1

Attaching to a network AT+CGATT=1

Querying the terminal status AT+NUESTATS

Querying the IP address
assigned by the core network

AT+CGPADDR

Transmitting data AT+NMGS=1,11

Querying the sending buffer AT+NQMGS

Querying the receiving buffer AT+NQMGR

The MCU uses AT commands to control the communication module. Terminal
manufacturers must develop software that invokes AT commands to control
communication modules in addition to developing corresponding service functions.

13.2.3 Wi-Fi AT Commands

Table 13-3 Common Wi-Fi AT commands

Purpose AT Command

Restarting the module AT+RST

Querying the version AT+GMR

Scanning nearby access points
(APs)

AT+CWLAP

Connecting to an AP AT+CWJAP

Trainee Guide for IoT Engineers Page 173

Purpose AT Command

Disconnecting from an AP AT+CWQAP

Querying connection
information

AT+CIPSTATUS

Resolving the domain name AT+CIPDOMAIN

Establishing a connection AT+CIPSTART

Starting transparent
transmission

AT+CIPMODE

Transmitting data AT+CIPSEND

Querying the local IP address AT+CIFSR

Using the ping operation AT+PING

Scanning available APs AT+CWLAP

Restoring factory settings AT+RESTORE

Querying the available memory
space of the system

AT+SYSRAM

Table 13-3 lists the common AT commands for Wi-Fi modules. Different modules have
different AT commands, because networks have different usage and functions. Therefore,
some commands are the same, and others are different. For example, GPRS and NB-IoT
are cellular network technologies defined in 3GPP specifications, and their AT commands
have many similarities. However, Wi-Fi is not a communications technology defined in
3GPP specifications, and its AT commands are quite different from those of NB-IoT. Most
commands are used to interact with the gateway and access the network through the
gateway. The Wi-Fi module does not involve data such as SIM card and core network
data. Therefore, its AT commands are different.

13.2.4 AT Commands for Huawei-Certified Modules

Table 13-4 Common AT commands for Huawei-certified modules

Purpose AT Command

Obtaining the Huawei SDK version AT+HMVER

Setting MQTT connection parameters AT+HMCON

Disconnecting from the HUAWEI CLOUD IoT
platform

AT+HMDIS

Sending MQTT data to a topic AT+HMPUB

Trainee Guide for IoT Engineers Page 174

Purpose AT Command

Transmitting data received by the module to
an external MCU

+HMREC

Transmitting the module connection or
disconnection status to an external MCU

+HMSTS

Subscribing to a custom topic AT+HMSUB

Unsubscribing from a custom topic AT+HMUNS

Setting a server or client certificate AT+HMPKS

In addition to the AT commands for NB-IoT and Wi-Fi modules, some Huawei-certified
modules have AT commands. These modules have passed compatibility certification. The
AT commands and format specifications are basically the same as Huawei's general
requirements.

13.3 Terminal-side Development for Communication
Modules

13.3.1 NB-IoT Terminal Interconnection Process
The process of connecting an NB-IoT terminal to the IoT platform is as follows:

1. Power on the terminal and run the AT+NRB command to reset the terminal. If OK is
returned, the terminal is running properly.

2. Run the AT+NTSETID=1,Device_ID command to specify the device ID. The device ID
is the terminal IMEI. If the command is executed, OK is returned.

3. Run the AT+NCDP=IP,Port command to set the IP address and port for connecting
to the IoT platform. The port is 5683. If the command is executed, OK is returned.

4. Run the AT+CFUN=1 command to enable the network access function. If the
command is executed, OK is returned.

5. Run the AT+NBAND=Frequency_band command to specify the frequency band. If
the command is executed, OK is returned.

6. Run the AT+CGDCONT=1,"IP","APN" command to set the IoT core APN. If the
operation is successful, OK is returned. To obtain the APN, contact the carrier or
OpenLab owner.

7. Run the AT+CGATT=1 command to connect the terminal to the network. If the
command is executed, OK is returned.

8. Run the AT+CGPADDR command to check whether the terminal has obtained the IP
address assigned by the IoT core network. If it has, the terminal has accessed the
network.

Trainee Guide for IoT Engineers Page 175

9. Run the AT+NMGS=Data_length,Data command to enable the terminal to send
upstream data. If the upstream data is sent, OK is returned.

10. If the IoT platform sends downstream data to the terminal, obtain downstream data
by running the AT+NMGR command.

NB-IoT is an operator network. Therefore, the connection process of NB-IoT modules or
devices is similar to that of mobile phones. The NB-IoT network also uses SIM cards for
access.

First, you need to perform initialization, such as terminal reset. Then enter the device ID
and platform port, and enable the NB-IoT function. You do not need to set the frequency
band and core network when an automatic network is used. Run the AT+CGATT
command to connect the terminal to the network. So far, the connection between the
terminal and platform is established. The subsequent steps are related to data
transmission.

13.3.2 Wi-Fi Terminal Interconnection Process
The process of connecting a Wi-Fi terminal to the IoT platform is as follows:

1. Power on the terminal, and run the AT+CWMODE=3 command to reset the terminal.
If OK is returned, the Wi-Fi mode has been configured on the terminal.

2. Run the AT+CWJAP=SSID,Password command to connect to the router. If the
command is executed, OK is returned.

3. Run the AT+CIFSR command to query the IP address of the ESP8266. If the
command is executed, OK is returned.

4. Run the AT+CIPSTART=TCP,IP,PORT command to set the IP address and port for
connecting to the IoT platform. The port is 5683. If the command is executed, OK is
returned.

5. Run the AT+CIPSEND=<length> command to send data. After > is returned, input
the data. If the command is executed, SEND OK is returned.

The connection process for Wi-Fi modules is similar to that for NB-IoT modules, except
the Wi-Fi module does not require a SIM card. Therefore, you only need to enter the Wi-
Fi name and password as well as the IP address and port of the IoT platform to connect.

Trainee Guide for IoT Engineers Page 176

14 Conclusions

Now you have finished the HCIA-IoT course. Congratulations! This course provides a brief
introduction to the basics of the IoT. There are many other IoT technologies and
knowledge that are not covered in this course. For example, in addition to the basic
knowledge about the four-layer IoT architecture described in this book, there is also
knowledge related to development at the sensing, network, and platform layers, such as
basic experiments of single-chip microcomputers at the sensing layer, development
experiments at the platform layer, and development of communication chips at the
network layer. All these will be introduced in HCIP-IoT V2.5. The HCIP-IoT course will also
introduce other HUAWEI CLOUD services, such as big data and AI. You are welcome to
learn HCIP-IoT.

The following resources are listed, hoping you can learn more from them:

 Huawei Certification: https://e.huawei.com/en/talent/#/cert?navType=authNavKey

 Huawei e-Learning: https://ilearningx.huawei.com/portal/subportal/EBG/51

https://e.huawei.com/en/talent/#/cert?navType=authNavKey
https://ilearningx.huawei.com/portal/subportal/EBG/51

Trainee Guide for IoT Engineers Page 177

 Huawei ICT Academy: https://www.huaweiacad.com/webapps/hw-toboo-
BBLEARN/portal/exec.do?t=1561101910908

Though we strive for accuracy, information in this Guide may contain inadvertent
inaccuracies or even errors. Contact us if you have any questions or suggestions.

https://www.huaweiacad.com/webapps/hw-toboo-BBLEARN/portal/exec.do?t=1561101910908
https://www.huaweiacad.com/webapps/hw-toboo-BBLEARN/portal/exec.do?t=1561101910908

Trainee Guide for IoT Engineers Page 178

15 References

Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems (4th Edition). China
Machine Press, 2017.

Huang Yan and Yang Lin. Huawei Cloud IoT Platform Technology and Practice. Posts &
Telecom Press Co., Ltd., 2020.

Ding Fei, Zhang Dengyin, and Cheng Chunmao. Introduction to Internet of Things. Posts
& Telecom Press Co., Ltd., 2020.

Kong Linghe, Li Xuefeng, and Chai Fangming. IoT Operating System Principle (LiteOS).
Posts & Telecom Press Co., Ltd., 2020.

Trainee Guide for IoT Engineers Page 179

16 Appendix

Figure 16-1 IoT security solution architecture

Trainee Guide for IoT Engineers Page 180

Figure 16-2 RS-232 port diagram

Table 16-1 RS-232 port

Pin Signal Pin Signal

1 Data Carrier Defect 6 Data Set Ready

2 Received Data 7 Request to Send

3 Transmitted Data 8 Clear to Send

4 Data Terminal Ready 9 Ring Indicator

5 Signal Ground

Trainee Guide for IoT Engineers Page 181

Figure 16-3 Comparison of wireless communications technologies

Trainee Guide for IoT Engineers Page 182

Figure 16-4 NB-IoT solution architecture

Trainee Guide for IoT Engineers Page 183

Figure 16-5 Smart parking

Trainee Guide for IoT Engineers Page 184

Figure 16-6 Shared bikes

Trainee Guide for IoT Engineers Page 185

Figure 16-7 Smart street lamps

Trainee Guide for IoT Engineers Page 186

Figure 16-8 Smart meter reading

Trainee Guide for IoT Engineers Page 187

Figure 16-9 Evolution of 5G communications technical standards

Trainee Guide for IoT Engineers Page 188

Figure 16-10 More countries value 5G & AI as key to national digitization

Trainee Guide for IoT Engineers Page 189

Figure 16-11 5G networking mode

Trainee Guide for IoT Engineers Page 190

Figure 16-12 FWA solution

Trainee Guide for IoT Engineers Page 191

Figure 16-13 Home network development

Trainee Guide for IoT Engineers Page 192

Figure 16-14 Smart home

Trainee Guide for IoT Engineers Page 193

Figure 16-15 Huawei Smart Home solution

Trainee Guide for IoT Engineers Page 194

Figure 16-16 Huawei HiLink access (ecosystem connection)

Trainee Guide for IoT Engineers Page 195

Figure 16-17 IoT Is ushering in industry innovation and transformation

Trainee Guide for IoT Engineers Page 196

Figure 16-18 HUAWEI CLOUD IoT platform

Trainee Guide for IoT Engineers Page 197

Figure 16-19 Why is data analysis required?

Trainee Guide for IoT Engineers Page 198

Figure 16-20 IoT data characteristics

Trainee Guide for IoT Engineers Page 199

Figure 16-21 Asset model

Trainee Guide for IoT Engineers Page 200

Figure 16-22 Data analysis architecture

Trainee Guide for IoT Engineers Page 201

Figure 16-23 Real-time analysis

Trainee Guide for IoT Engineers Page 202

Figure 16-24 Characteristics of edge computing

Trainee Guide for IoT Engineers Page 203

Figure 16-25 IoT solution development process based on the IoT platform

Trainee Guide for IoT Engineers Page 204

Figure 16-26 Development on the device side

Trainee Guide for IoT Engineers Page 205

Figure 16-27 Product model

Trainee Guide for IoT Engineers Page 206

Figure 16-28 Product model example

Trainee Guide for IoT Engineers Page 207

Figure 16-29 Data reporting process

Trainee Guide for IoT Engineers Page 208

Figure 16-30 Immediate delivery of LwM2M/CoAP device commands

Trainee Guide for IoT Engineers Page 209

Figure 16-31 Delayed delivery of LwM2M/CoAP device commands

Trainee Guide for IoT Engineers Page 210

Figure 16-32 Immediate delivery of MQTT device commands

Trainee Guide for IoT Engineers Page 211

Figure 16-33 Delayed delivery of MQTT device commands

Trainee Guide for IoT Engineers Page 212

Figure 16-34 Codec example

Trainee Guide for IoT Engineers Page 213

Figure 16-35 API credentials

Trainee Guide for IoT Engineers Page 214

Figure 16-36 API for creating a device

Trainee Guide for IoT Engineers Page 215

Figure 16-37 API for querying a device

Trainee Guide for IoT Engineers Page 216

Figure 16-38 API for modifying device information

Trainee Guide for IoT Engineers Page 217

Figure 16-39 API for querying device messages

Trainee Guide for IoT Engineers Page 218

Figure 16-40 API for deleting a device

Trainee Guide for IoT Engineers Page 219

Figure 16-41 Authentication for devices using LwM2M over CoAP

Trainee Guide for IoT Engineers Page 220

Figure 16-42 Authentication for devices using Native MQTT or MQTTS

Trainee Guide for IoT Engineers Page 221

Figure 16-43 Huawei LiteOS framework

	About This Document
	Overview
	Description

	1 What Is Internet of Things?
	1.1 Origin of the IoT
	1.2 IoT Architecture
	1.3 Huawei IoT Solution
	1.3.1 Platform Layer
	1.3.2 Network Layer
	1.3.3 Sensing Layer

	2 IoT Industry Applications and Solutions
	2.1 Smart City Solution
	2.1.1 Common Problems
	2.1.2 Solutions

	2.2 Smart Campus Solution
	2.2.1 Common Problems
	2.2.2 Solutions

	2.3 Smart Grid Solution
	2.3.1 Common Problems
	2.3.2 Solutions

	2.4 IoV Solution (IoV and DRIS)
	2.4.1 Common Problems
	2.4.2 Solutions

	2.5 Industrial IoT Solution
	2.5.1 Development Bottlenecks
	2.5.2 Solutions

	2.6 Development Trend of IoT Applications

	3 IoT Security Technologies
	3.1 Typical IoT Security Cases
	3.2 Huawei IoT Security Architecture
	3.3 Typical Huawei IoT Security Cases

	4 Common IoT Communications Technologies
	4.1 Wired Communications Technologies
	4.1.1 Ethernet
	4.1.2 RS-232 and RS-485
	4.1.3 Communication Serial Port Bus
	4.1.4 M-Bus
	4.1.5 PLC
	4.1.6 Comparison of Wired Communications Technologies

	4.2 Wireless Communications Technologies
	4.2.1 Short-Range Wireless Communications Technologies
	4.2.1.1 Bluetooth
	4.2.1.2 Wi-Fi
	4.2.1.3 ZigBee
	4.2.1.4 Z-Wave
	4.2.1.5 Comparison of Short-Range Wireless Communications Technologies

	4.2.2 Cellular Mobile Communications Technology
	4.2.2.1 2G
	4.2.2.2 3G
	4.2.2.3 4G
	4.2.2.4 5G
	4.2.2.5 Comparison of Cellular Mobile Communications Technologies

	4.2.3 LPWA Communications Technologies
	4.2.3.1 Sigfox
	4.2.3.2 LoRa
	4.2.3.3 NB-IoT
	4.2.3.4 eMTC
	4.2.3.5 Comparison of LPWA Technologies

	4.2.4 Wireless Communications Technologies

	5 NB-IoT Communications Technologies and Solutions
	5.1 NB-IoT Standards Evolution and Industry Development
	5.1.1 Evolution of NB-IoT Standards
	5.1.2 LPWA Technologies Adopted by Global Operators
	5.1.3 NB-IoT Spectrum Selections of Global Operators
	5.1.4 NB-IoT Industry Development

	5.2 Key NB-IoT Technologies
	5.2.1 Ultra-Low Cost
	5.2.1.1 NB-IoT Deployment Modes
	5.2.1.2 Chip Design

	5.2.2 Ultra-Low Power Consumption
	5.2.3 Ultra-Wide Coverage
	5.2.4 Massive Connections

	5.3 NB-IoT Solutions

	6 5G Communications Technologies and Solutions
	6.1 5G Standards Evolution and Industry Development
	6.2 Key 5G Technologies
	6.2.1 New Architecture
	6.2.1.1 Network Slicing
	6.2.1.2 NSA&SA Networking
	6.2.1.3 5G Core Network (NGC)

	6.2.2 New Radio
	6.2.3 Full Spectrum

	6.3 Three 5G Application Dimensions
	6.3.1 eMBB
	6.3.2 mMTC
	6.3.3 URLLC

	6.4 5G Commercial Solutions
	6.4.1 B2C Solutions
	6.4.2 B2B Solutions
	6.4.3 B2H Solutions

	7 Huawei Industrial IoT Gateways
	7.1 Overview of Industrial IoT Gateways
	7.1.1 Challenges Faced by IoT in the Industrial Field
	7.1.2 Why Industrial IoT Gateways?

	7.2 Edge Computing
	7.3 Network Topology
	7.3.1 Star Topology
	7.3.2 Ring Topology
	7.3.3 Bus Topology
	7.3.4 Mesh Topology

	8 Home IoT Gateways
	8.1 Home IoT Gateway Overview
	8.1.1 Home Network Development
	8.1.2 Positioning of Smart Home Gateways
	8.1.3 Key Services of Smart Home Gateways

	8.2 Huawei Smart Home Solution
	8.3 HiLink Platform

	9 IoT Platform
	9.1 Overview of Ecosystem and Platform
	9.1.1 Platform Model
	9.1.2 Ecosystem

	9.2 Origin of the IoT Platform
	9.2.1 IoT Is Ushering In Industry Innovation and Transformation
	9.2.2 Major Challenges Facing the IoT Industry
	9.2.3 Requirements for the IoT Platform

	9.3 Introduction to the HUAWEI CLOUD IoT Platform
	9.3.1 IoT Platform Overview
	9.3.2 IoT Device Access
	9.3.2.1 Overview
	9.3.2.2 Typical IoT Protocols

	9.3.3 Device Management
	9.3.3.1 Device Registration and Access Authentication
	9.3.3.2 Command Delivery
	9.3.3.3 Device Linkage Rules
	9.3.3.4 Firmware and Software Upgrades
	9.3.3.5 Batch Operations

	9.3.4 Data Forwarding
	9.3.5 Application Integration
	9.3.5.1 Application-side RESTful APIs
	9.3.5.2 Application Registration Authentication
	9.3.5.3 Subscribe/Push

	9.3.6 IoT Analytics
	9.3.7 IoT Studio
	9.3.8 Other Related Services
	9.3.8.1 Edge Computing
	9.3.8.2 Global SIM Link

	9.3.9 Characteristics of the HUAWEI CLOUD IoT Platform
	9.3.9.1 Access Agnostic
	9.3.9.2 Reliable
	9.3.9.3 Secure
	9.3.9.4 Scalable
	9.3.9.5 Open

	10 IoT Platform Secondary Development
	10.1 Introduction to Platform Secondary Development
	10.2 Product Development
	10.2.1 Product Model
	10.2.1.2 Product Model Example: Smart Water Meter

	10.2.2 Codec
	10.2.2.1 Overview
	10.2.2.2 Data Reporting
	10.2.2.3 Command Delivery

	10.3 Development on the Application Side
	10.3.1 Calling APIs
	10.3.1.1 Making an API Request
	10.3.1.2 Authentication
	10.3.1.3 Returning a Response

	10.3.2 API
	10.3.2.1 Creating a Device
	10.3.2.2 Querying a Device
	10.3.2.3 Modifying Device Information
	10.3.2.4 Querying Device Messages
	10.3.2.5 Deleting a Device

	10.4 Development on the Device Side

	11 IoT OS
	11.1 Preliminary Study of the OS
	11.1.1 Concept
	11.1.2 History
	11.1.3 Development

	11.2 Challenges to the IoT OS
	11.2.1 IoT Terminal Development
	11.2.2 IoT OS Development

	11.3 Huawei LiteOS
	11.3.1 Introduction to Huawei LiteOS
	11.3.2 Commercial Use of Huawei LiteOS
	11.3.3 Huawei LiteOS Industry Applications

	12 Sensing Layer Development
	12.2 Hardware Development at the Sensing Layer
	12.2.1 Single-Chip Microcomputer Basics
	12.2.1.1 Microcomputer Working Principles
	12.2.1.2 Instruction Set
	12.2.1.3 Processing Units
	12.2.1.4 Architecture of the Single-Chip Microcomputer
	12.2.1.5 ADC and DAC

	12.2.2 Sensing Technology Basics
	12.2.2.1 Photoelectric Sensor
	12.2.2.2 Temperature Sensor
	12.2.2.3 Acceleration Sensor
	12.2.2.4 Heart Rate Sensor

	12.3 Software Development at the Sensing Layer
	12.3.2 Huawei LiteOS Kernel
	12.3.2.2 Task
	12.3.2.3 Memory
	12.3.2.4 Interrupt
	12.3.2.5 Queue
	12.3.2.6 Event
	12.3.2.7 Semaphore
	12.3.2.8 Mutex
	12.3.2.9 Time Management
	12.3.2.10 Timer

	12.3.3 Huawei LiteOS Framework
	12.3.4 Huawei LiteOS APIs

	13 AT Commands of the Communication Module
	13.2 Introduction to AT Commands
	13.2.1 AT Command Types
	13.2.2 NB-IoT AT Commands
	13.2.3 Wi-Fi AT Commands
	13.2.4 AT Commands for Huawei-Certified Modules

	13.3 Terminal-side Development for Communication Modules
	13.3.1 NB-IoT Terminal Interconnection Process
	13.3.2 Wi-Fi Terminal Interconnection Process

	14 Conclusions
	15 References
	16 Appendix

